
 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 1

LET’S TRAIN
VIRTUAL ROBOTS

L E S S O N 3 : S E L F - D R I V I N G C A R

S T U D E N T G U I D E

OBJECTIVE | GETTING STARTED

03

04

05

05

06

33

33

35

36

LESSON 3: SELF-DRIVING CAR

CODING CONNECTION

STARTING THE LESSON

HANDS-ON EXERCISES

CHALLENGE

EXTENSION ACTIVITIES

RESOURCES

ASSESSMENT

TABLE OF CONTENTS

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 3

OBJECTIVE

This lesson is similar to the previous learning in Lesson Two - Sumo Robots, but will show students
how similar concepts can be used to accomplish new goals. It will also build their confidence before
they attempt the extension/future activities that come later in the Unreal Learning Kit.

This lesson will again deal with sensors, specifically how robots can make decisions based on received
sensor data.

Students will create a delivery robot, programming it to follow a line to its destination. In an extension
exercise, students can expand their learning by building the robot with two sensors. With a little extra
coding, they’ll be able to make its line-following movements smoother and more accurate.

LET’S TRAIN VIRTUAL ROBOTS
LESSON 3: SELF-DRIVING CAR

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 4

GETTING STARTED

Getting Started Guide

If you are installing and using Unreal Engine for the first time, please complete the Getting Started
Guide before proceeding through this activity. The guide includes instructions for getting the Unreal
Learning Kit project files installed so you can successfully complete this activity.

You can find the Getting Started Guide here!

Lesson Intent

We recommend all students go through all the lessons in order, so they gain a full perspective of the
Unreal Learning Kit and how it supports both robot creation and coding motors/sensors in the Unreal
Engine environment.

The Unreal Learning Kit explores the concepts of robotic engineering using applied physics. While
giving students immediate feedback on their coding and providing principles/coding language
knowledge that they can apply to other physical robotic systems they may work with in the future.

LESSON THREE: SELF-DRIVING CAR

Introduction

Have you seen Tesla factory assembly robots follow a path (as in How the Tesla Model S is Made | Tesla
Motors Part 1 (WIRED),) or ridden in a self-driving car? How do these robots see the road or path and
stay on it independently? Let’s explore the world of autonomous vehicles by creating a delivery bot.

Line-following robots are your on-ramp to the wonderful world of autonomous vehicles. This simple
exercise will give you an introduction to just one way that a vehicle can use the environment to
navigate independently. To understand how a line-following robot works, you must understand what a
light sensor detects, and how that information can be used to stay on or within a preset line or path.

In this activity, we will be coding a robot with a light sensor to follow a line, thus becoming a line-
following robot.

Lesson Overview

To control the robot, we will learn how to turn a robot away from the line and back toward it again,
ultimately following the line as the robot continues to move forward.

If the robot sees the line, it will turn slightly away from it. When it no longer sees the line, it will turn
back the other direction to look for the line again and continue. This process must be repeated
continuously to have the robot virtually stay “on” the line. The robot will have a bit of a “wiggle” effect as
it travels along this line.

The code must contain a loop that includes a conditional statement where the sensor continues to test
the result and make adjustments to turn toward or away from the line continuously.

https://cdn2.unrealengine.com/getting-started-in-unreal-engine-hour-of-code-3c02e8672de5.pdf
https://www.youtube.com/watch?v=8_lfxPI5ObM&t=2s
https://www.youtube.com/watch?v=8_lfxPI5ObM&t=2s

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 5

Using the light sensor will require understanding that:

• The light sensor will return a numeric value to the robot
• Our conditional statement will test the current value of the sensor to determine if the number is

within the low range (black surface = line) or the high range (light surface = floor).
• If the value is in the low range, it means the robot is seeing the line, so it will be

programmed to drive away from it
• Likewise, if the value is in the high range, it is seeing the floor, so it will be programmed

to drive toward the line
• The code will need to loop continuously, so it tests the sensor and controls the motors several

times per second
• The robot will stop at its destination. This activity’s current robot model will stop when it hits the

invisible Blocking Volumes box. We do not have to code this action.

An extension of this activity explores how a second sensor can create a smoother action for the robot
as it travels forward.

CODING CONNECTION

Completing this activity will help students understand the use of loops and conditional statements in
a practical environment. This robot will have a light sensor to detect the difference between light and
dark. The returned sensor values will test against a threshold value to determine whether it is seeing
the white border (ground) or the line (path) as it travels along.

The conditional statement will help the robot to follow the line, while the loop will help it continually
move until it reaches its destination.

Let’s find that line!

STARTING THE LESSON

Robot Construction: Using a Light Sensor

In our last lesson, we used a light sensor to help the robot see the out-of-bounds line in the sumo
ring. We will use the same orientation for our delivery robot but will change our code to help the robot
use that same sensor to guide it along the path.

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 6

Defining a Purpose

Our robot’s specific task will be following a line on the ground. We will identify the requirements for the
environment and set any rules that must be followed to complete the task.

Environment

• The robot will be placed on the line facing in the direction it must travel.
• The line to follow will have smooth curves and will not overlap itself.
• The driving surface will be flat.

Rules

• The robot must drive autonomously via code with no user intervention.
• The robot will start driving immediately and continue until it reaches the end of the line.
• If the robot strays away from the line, it should be stopped and modified before trying again.

Requirement

• Uses a sensor to “see” the black line/path and the white border/ground.
• Drives away from the line when “seeing” the black line.
• Turns toward the line when “seeing” the white border/ground.

HANDS-ON EXERCISES

Exercise 1-a: Opening the Line-Following Map

In this activity we will open a project file with a starter robot in place at the start of the line. This robot
does not function, so you will need to add the sensor and the coding to make it work. We will first add
a light sensor to it, test the sensor values, and then build additional code to decide when we want the
robot to move.

Figure 3 - 1

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 7

• In the Content Browser navigate to the Content -> LearningKit_Robots -> Maps_Robots folder
• Double click on the L3 folder to open it
• Then open Map_3-1_FollowLine by double-clicking it
• You should now see a map with a robot at the beginning of a curving black-on-white path

extending in front of the robot, showing a destination parking spot beside two other vehicles

Exercise 1-b: Adding a Light Sensor to the Robot

• We will be using the light sensor in this activity. The position of the sensor will affect its accuracy
and its response to the actions we will be coding

Before we add the sensor, we need to consider the following situations:
• The height of the sensor from the surface will affect its accuracy
• The front-to-back location of the sensor on the robot affects the turnaround action of the robot,

which will affect its reliability
We have added a helper in the Blueprint viewport for you. Look for the Cleverlike logo, see image below.

Figure 3 - 2

Figure 3 - 3

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 8

Edit the Robot

• Select the Robot - Click the robot in the Viewport (you should see BPC_Robot_FollowLine
displayed as our active Actor on the right side of the screen Details panel and World Outliner)

• In the Details panel: click Edit Blueprint, then Open Blueprint Editor
• You should now see the Event Graph inside the of BPC_Robot_FollowLine Blueprint

Figure 3 - 4

Figure 3 - 5

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 9

• For exercise 3-1, notice that you do not have any code here, except for Event BeginPlay node
and RunRobot nodes in the Condition box on the left, with no coding in the Run Motors box on
the right

Add the Light Sensor

• In the Components Panel at the top left of the interface, click the green Add Component button
and type “sensor” in the Search bar

• Select the BP_Sensor_Light by clicking it

• This will add your new component at the bottom of the list of components
• If it does not appear directly under the LightSensorUI component, you may have added it under

another component. You will need to click and drag the BP_Sensor_Light up and onto the
Powercore, for it to be dependent on our robot’s Powercore. It will then appear at the bottom of
the component list. If it is under another component, it becomes a “child” of that component,
rather than being a child of our Powercore (robot)

Figure 3 - 6

Figure 3 - 7

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 10

• To see where the sensor is located in relation to the Powercore, click the Viewport tab (see
Figure 3-8 below)

• Orient your robot until you can see the helper. Pro tip: Pressing the F key will zoom in on the
selected object, enlarging it and centering it in your view

• The sensor has been placed automatically inside the Powercore. You can see it selected as a
faint yellow shape within the robot. We need to move the sensor to a better position where it will
function the most efficiently. To do this, use the movement tool located in the top-right of the
Viewport window.

• Click the first tool to use the Select & Translate objects tool (Move Gizmo), or press the W key,
(the gizmo shows up as a 3-headed arrow). We can click and drag the arrows of this gizmo to
move the sensor up, down, left, or right until the light sensor covers the Cleverlike logo. This is
our beginning position

• Our sensor is still pointing sideways, so we need to point it to look downward at the ground
• Again, in the Viewport window, on the right side of the toolbar, click on the second tool, or press

the key E, to use the Select & Rotate Objects tool (Rotation Gizmo) to turn it to face the ground

Figure 3 - 8

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 11

• Notice that the selected object (the light sensor) settings are changing in the Details panel to
the right, under the Transform section. You are changing the Location settings with the Move
Gizmo (W) and the Rotation settings with the Rotate Gizmo (E). Notice that as you drag the
sensor up or down, the value in the Location Z value box is changing in the Details panel

• Your robot with the sensor will now look like this image:

• With the BP_Sensor_Light selected, notice the Details panel on the right. You can type values in
the location fields if that works better for you

Figure 3 - 9

Figure 3 - 10

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 12

• Last, we need to compile our change in the robot’s internal code, click Compile and Save in the
top left of the toolbar

• (After compiling and saving, the Compile button will change from the orange question mark to a
green checkmark).

Click the Map_3-1_FollowLine tab at the top of the screen to return to the level and zoom in (scroll
wheel on the mouse or F key) on the robot. Your viewport should now display a sensor at the front of
the robot

• Note the robot in the level and the direction the robot is facing. The robot must begin facing the
route we want to drive forward towards and be on the left edge of the black line, or it will not
locate the line properly

• Arrange your view of the robot to the direction it needs to drive forward on the path line

Figure 3 - 11

Figure 3 - 12

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 13

Exercise 2: Getting Input from a Sensor

The robot needs to detect the difference between the white border and the black path line. We will use
the light sensor to detect the difference. We will focus on the black line, so our two conditions will be
“seeing” the line and “not seeing” the line

Sensor Type

• We will use a light sensor that will measure reflected light. A light or white surface reflects more
light than a dark surface, thus a light sensor will return a higher numeric value on a light surface
and a lower numeric value on a dark surface

Sensor Location

• The sensor must look down at the ground while the robot is driving
• The sensor must be close to the ground to get an accurate reading
• The sensor should be located at the front of the robot, away from the wheels

Adding Light Sensor Code

Once the sensor is placed in an ideal location, we will need to add commands to the robot’s code for it
to work and to return the input it sees for making decisions. We will now add the light sensor code to
the Blueprint Editor to direct the robot to use the sensor.

Note: Be sure that you have a notepad or a shared documenting system for your school and class to
log light sensor values as you proceed through the following steps.

• In the Level Viewport, click on the robot
• Look at the Details panel (on the right), be sure it shows that you are working on the BPC_

Robot_FollowLine

Open the Blueprint Editor

• In the Details panel, click Edit Blueprint, then Open Blueprint Editor (your screen should
now display the Event Graph inside the Blueprint editor; if you are still viewing the Blueprint’s
viewport, click the Event Graph tab)

• You should now be looking at the Event Graph (see Figure 3-13)

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 14

• You will notice that there is no code here, except for Event BeginPlay and RunRobot nodes in
the Events box on the left, with no coding in the Run Motors box on the right

• In the left side Events box, from the Event BeginPlay node, click the output execution pin and
drag to the right into the gray Run Motors box to create a (white) wire

• When you let go, a list of executable actions will pop up, and you will be able to search for the
function we need

• Next, type “run robot” to search for the Run Robot function

• When Run Robot is selected in gray, press enter on the keyboard to select the function. This
will add a Run Robot node, and automatically create a wire (displayed as a white line) from the
output execution pin to the input execution pin connecting the nodes. This will call the Run
Robot event when you play the game

Figure 3 - 13

Figure 3 - 14

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 15

• Remember to Compile and Save every time you add code!

• Now we will hook up the sensor so that it will run when the Run Robot function is called. From
the Components panel, click on BP_Sensor_Light and drag it into the gray Run motors box (see
Figure 3-16)

Figure 3 - 16

Figure 3 - 15

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 16

• Now, we need to connect our sensor to a node to run the sensor. We can create a new node by
dragging a wire from the blue BP_Sensor_Light output pin to the right and releasing your mouse
button when hovering over a blank area of the gray background

• When you let go, a list of executable actions will pop up, and you can search for the function
we need.

• We are going to save time by using a new specialized node called “Run Light Sensor
with Threshold.” This new node is like the Run Light Sensor node, though it contains
the conditional statement built-in. It will run the light sensor and you will only need to
change the Threshold value within the node, see Figure 3-18

• In the pop-up box, type in “run light sensor with threshold” to search for it, then select the Run
Light Sensor with Threshold node

• This will place a Run Light Sensor with Threshold node in the Event Graph, with a blue wire
connecting to its Sensor input pin from the BP_Sensor_Light node

Figure 3 - 17

Figure 3 - 18

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 17

• Last, we need to connect the Run Robot node to the Run Light Sensor with Threshold
node, by dragging a wire from the white execution pin of the Run Robot node to the Run
Light Sensor with Threshold node’s input pin (also white)

This process has placed the sensor node into the code and told it to turn on when we play the
game. However, our current code will run these commands and immediately stop. We will not be
able to see what the sensor is detecting. To observe what the sensor is detecting, we need to
create a loop

Pro Tip

If you need to disconnect a wire, hold the Alt key and Left-Mouse click on the wire or on the pin.

If necessary, toggle ON the ability to observe the lines this sensor is using to “see” with:
• Click the option box next to Draw Sensors to toggle ON the visibility of the line traces
• It will place a checkmark in the Draw Line Traces option box

We are going to copy the Run Robot node from the Run motors comment box to place a duplicate
of it in a second position in our code:

Figure 3 - 19

Figure 3 - 20

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 18

• In the gray Run motors comment box, click on the Run Robot node (to select it)
• Make a copy by pressing the keys Ctrl + C
• Paste it, by pressing Ctrl + V (this will place the copy below the original node)
• Then drag the new copied node to the right of the Run Light Sensor with Threshold node
• Next, to connect them, drag a wire from the <= Threshold pin to the input pin in the new Run

Robot node
• And drag a wire from the > Threshold pin of the Run Light Sensor with Threshold to the input

pin in the new Run Robot node to connect both thresholds to the same input on the Run Robot
node

• Your code will call the Run Robot node after running the Light Sensor with Threshold to create
a loop.

• Your code should now look like this:
• Now you can see the intensity values change when playing the game

• Remember to Compile and Save every time you add code!
Let’s play the game and see how it works.

• Click the Map_3-1_FollowLine tab

Getting the value of the white border:

• In the Viewport, use the Move Gizmo to move the robot manually left or right so that the sensor
is on the left side of the black line, and still above the path

Figure 3 - 21

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 19

• Click on Play or press ALT P
• Observe where the lines from the sensor are pointing and the number displayed in the “Light

Sensor Feedback” meter above the robot

The Light Sensor Feedback meter displays as a bar above the robot. The intensity meter will display as
a purple checker bar being covered with gradient shading from black (0) through gray to white (100) to
cover the purple checker bar, as it sees reflected light.

1. It will show more of the purple checker bar if it sees less light and is returning a lower value
2. It will show more gradient gray to white if it sees more light and is returning a higher value

• Log your sensor feedback values and note where the sensor is looking
• Stop the playing of the project by clicking the Stop button or pressing the Esc key
• Repeat this process to log the following values:

• The value when the sensor is looking at the black line
• The value when the sensor is looking at the white border

• The value when the sensor is seeing both the black line and the white border

• Compile and Save your Blueprint.

Figure 3 - 22

Figure 3 - 23

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 20

Students and Teachers Note: If you are having trouble getting your robot to return a large variance
between the white border and the black line, you may have the sensor located too high. You can adjust
the sensor’s placement within the robot’s Blueprint Viewport and try again.

Alternatively, you can open a different robot that has the light sensor already positioned into the
best placement, and rebuild your code within that robot’s Event Graph. To do this:

• From the Content Browser panel, open the Robots folder, then the L3_Robots folder
• Select the robot named BPC_Robot_FollowLine
• Then click and drag it from the Content Browser into the level
• If you get an Actor Placement Warning, click OK. This warning will not affect the lesson

• Select this robot in the Viewport
• In the Details panel, click Edit Blueprint, then Open Blueprint Editor (your screen should now

display the Event Graph inside the new and active Unreal tab of BPC_Robot_FollowLine
• Return to Exercise 2 at Figure 3-17 and work forward to build your code for this robot

Exercise 3: Determine the Threshold Values Needed

What is a threshold?

In our project, the value of the sensor can be between 0 and 100. The robot will need to decide between
two different actions based on the sensor feedback at any given time while driving.
The threshold is a single numeric value that will tell the robot’s conditional statement to select an
action to perform. The condition asks whether the sensor has seen a value that is greater than or
equal to (>=) the threshold number—in which case it triggers one action—or the sensor has seen a
value less than (<) the threshold number, triggering a different action. Thus, the threshold is our “limit”
used by the robot to decide if it is on the white border or the black path line.

We need to determine the following answers:

• How do we use the light sensor to get the feedback from what the robot “sees?”
• What value is shown if the line is detected?
• What value is shown if the line is NOT detected?

Note: Be sure that you have a notepad or a shared documenting system for your school and class to
log light sensor values as you proceed through the following steps.

Figure 3 - 24

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 21

Now, we need to establish the light sensor threshold value needed for consistently seeing the black
portion of the path. Having noted the values of the black path line versus the white border (ground),
we need to establish a threshold value that divides the full range of sensor input into “seeing the white
border” and “seeing the black path line.”

• Refer to your notes where you logged the White border/ground and delivery path line values
• Determine the threshold value with this formula: ((High – Low) / 2) + Low = Threshold

• So, if the High value (the white line border) = 90, the Low value (the black path line) = 10,
then the formula will read ((90-10)/2)+10 = 50

• Observe and log your Threshold value

We have included a Threshold calculator in the project. It can be accessed by navigating through the
Window menu at the top left of the interface.

Window > Editor Utility Widgets > Threshold_Calculator

Figure 3 - 25

Figure 3 - 26

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 22

Figure 3 - 27

Exercise 4: Finding the Line

We will test the light sensor input, and have it make decisions based on its current feedback. Then we
will tell it to run the motors depending on that feedback. We need to add in some motor commands to
make the robot move and turn on its own.

Aligning the Robot to the Delivery Path Line

Notice the direction the robot is facing in reference to the line before we begin moving it. This will
determine the choices we make when coding the movements. Position your robot towards the path,
with the light sensor on the white border to the left of the black line, for this part of the exercise.

Responding to Sensor Input

When the robot can read the input values from the sensor, it can perform a specific action based on
the feedback from the sensor. We first want it to decide that if it sees the line, then it should arc turn
away from the line.

Activity: Now we will set the threshold value so that it will give feedback when it sees (or doesn’t see)
the black line. If the input value is higher than the threshold, it is seeing the white border.

Open the robot in the Blueprint Editor.

If you already have the Blueprint open If you don’t have the Blueprint open

Switch to the tab labelled: BPC_Robot_
FollowLine

• Select the robot (you should see BPC_
Robot_FollowLine displayed as our active
Actor in the right-side Details Panel).

• In the Details panel, click Edit Blueprint,
then Open Blueprint Editor

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 23

• If you are on the Viewport of the Blueprint, click the Event Graph tab
• Your screen should now display the Event Graph inside the Blueprint editor of BPC_Robot_

FollowLine

Figure 3 - 28

Figure 3 - 29

Edit our previous code to make room for new commands:
We need to make space available in the code to be able to place new commands between the Run
Light Sensor with Threshold node and the Run Robot node at the end

• Click and drag the Run Robot node and move it further to the right (see Figure 3.29)
We need to break the wires between the Run Light Sensor with Threshold node and the Run Robot
node at the end of our code. We will be adding new nodes and connecting them to different commands

• To break the wires connected to the Run Robot input pin, hold the Alt key on the keyboard and
left-mouse click the wire(s) or the white execution pin of the Run Robot node

Your Blueprint should now look like this:

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 24

Motor Commands

• The Run Motor node controls the motor connected to it. Figure 3-30 shows the Blueprint setup
for making the BP_Motor_A component turn. The Speed input controls how fast the motor turns,
positive numbers make it spin in one direction, and negative numbers make the motor spin in
the opposite direction. It takes values from –100 to +100

Figure 3 - 30

Figure 3 - 31

• The Stop Motor node controls the motor connected to it. Figure 3-31 shows the Blueprint setup
to make BP_Motor_A stop if it is turning. The Coast input will tell the motor to coast slowly to a
stop if toggled ON or stop turning immediately if toggled OFF. In Figure 3-31 the motor will stop
immediately, as it is toggled OFF

Action when seeing the white border

When the input value is higher than the threshold, it is seeing the white border (ground)). We want the
robot to look for the black line continuously, so if it is on the white border or anywhere off the black
line, we want it to turn toward the black line.

Coding the robot to turn toward the black line

Our robot is currently placed slightly left of the black line, on the white border.
Since we want the robot to turn right (towards the black line), we need the left motor (Motor A) to move
forward and the right motor to stay still.

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 25

Let’s first add the BP_Motor_A node:
From the Components panel, click the BP_Motor_A and drag it into the event graph

Figure 3 - 32

Figure 3 - 33

Figure 3 - 34

Next, click and drag from the BP_Motor_A blue output pin to the right.
• Search for (type) “run motor”, and select the Run Motor node

• Remember, we are seeing more reflected light when the robot is NOT on the black line, therefore,
the light sensor input value is greater than the threshold value

• Connect (click and drag) the white > Threshold pin of the Run light sensor with Threshold node
to the Run Motor input pin

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 26

• Set the speed of the Run Motor node to a value between 0 and 100 (We recommend a speed of
30) to turn the motor in a direction that will push the robot forward. This will also turn the robot
toward the black line

• From the Components Panel, click and drag BP_Motor_B to the right of the Run Motor node, to
place it into the flow of code as shown in Figure 3-35

Figure 3 - 35

Figure 3 - 36

Figure 3 - 37

• Click and drag from the BP_Motor_B blue output pin to the right
• Search for (type) “stop motor”, and select the Stop Motor node

Connect the Run Motor to the Stop Motor.
• Click and drag a (white) wire from the Run Motor output pin to the Stop Motor input pin

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 27

Connect the Stop Motor node to the copied Run Robot node at the right:
• Click and drag a (white) wire from the Stop Motor node’s output pin to the Run Robot node’s

input pin

Create a comment box for the four new commands as a group:
• Click and drag around all the four nodes with the lasso or marquee tool to select all of them at

once at once
• Press the C key to create a comment box around the selected nodes
• Type in “Turn toward line” and press Enter
• This will name your subsection of code

• Compile and Save

• Click on the Map_3-1_FollowLine tab to return to the map
• Position your robot to be at the beginning of the path——but left of the black line—on the

white border
• Press the 1 key to zoom out to see the entire map
• Play the game

Figure 3 - 38

Figure 3 - 39

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 28

A Note on Performance

The performance of these robots is tied to the performance of the computer you are working on.
You can toggle a display mode that shows how many frames per second (fps) the project is running
at by pressing c Ctrl + Shift + H. The development of these lessons was created on a computer that
can reach 120 fps. If your robot is not running as expected, it could be due to the performance of
your computer. Don’t get discouraged, you can close other applications on the computer to help get
better performance, and you can always try again and continue to gather more data.

• Observe, test, and debug to make sure your robot turns towards the black line when it sees the
white border or any area that is NOT the black line

Exercise 5: Completing the Branch

When you observe the robot’s actions note that it is continually turning towards the black line, and
does not yet know what to do when it sees it. We want to look now for a sensor input that is less
than or equal to (<=) our threshold value when it sees the black line. We will build the other side of
our branch.

Action When Seeing the Path (Black) Line

Next, we will add nodes to test if the robot sees the black path line; connect the sensor output to the
new branch; add motor functions, and change the motor speeds to turn in the proper direction.

Review the Logic Diagram Above. If our sensor returns a value that is <= our Threshold (50), it is
seeing the black line. What do you want to have happen when it sees the black line? While we may
think we want it to drive forward along the line, we are going to make the robot “wiggle” along the way
by moving away from the black line, then turning back towards the black line, and thus continuously
moving forward using the line as a guide. To do this, when it sees the black line, we want the robot to
turn left, or away from it.

Figure 3 - 40

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 29

We are going to quickly make the other branch with all the nodes by duplicating the current subsection
of code from the first branch, and then editing it to move in the other direction when the sensor sees a
value less than or equal to our threshold value.

Open the Blueprint Editor

• Click the robot in the Viewport (you should see BPC_Robot_FollowLine displayed as our active
Actor in the right-side Details panel)

• In the Details panel, click Edit Blueprint, then Open Blueprint Editor
• If you are on the Viewport still, click the Event Graph
• Your screen should now display the Event Graph inside the BPC_Robot_FollowLine Blueprint

Duplicate the previous commented code using copy and paste:

• Select the entire Turn toward line comment box (click and drag around the entire turn toward
line subsection. Be sure that all five elements (nodes and comment box) are now framed in
orange to show that they are selected)

• Tip: you can also use shift click to add to any selected node to make sure you have all of
them selected

• Right-click the selected nodes and select Copy from the pop-up dialog box (or press Ctrl + C)
• Move your mouse cursor to the upper blank gray area of the Blueprint
• Paste the duplicate sub-section by pressing Ctrl + V. This will paste a copy above the

original code
• Click and drag the duplicated nodes as needed to line it up with the original code box

(see Figure 3-41)

Rename the new comment box:

• Click anywhere in the gray Blueprint area to unselect the new section
• Right-click on the new upper box to select it
• Select Rename from the dialogue box
• Type in “Turn away from line”, press Enter
• This will rename your code box so that the two boxes have unique names (the upper box is

named “Turn away from line” and the lower box is named “Turn toward line”)

Figure 3 - 41

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 30

Figure 3 - 42

To quickly and easily reverse the direction that our robot will turn, to turn away from the line, we will
transpose the BP_Motor_A and BP_Motor_B nodes:

• Hold the ALT key and click the blue wires connected to the motors in our “Turn Away From
Line” box

• Click and drag the BP_Motor_B to the left of Run Motor node
• Click and drag the BP_Motor_A to the right of the Run Motor node
• Your code should look like Figure 3-43

Hook them back up:

• Click and drag a (blue) wire from the BP_Motor_B pin to the Run Motor node’s Target pin
• Click and drag a (blue) wire from the BP_Motor_A pin to the Stop Motor node’s Motor pin (see

Figure 3-44)

Figure 3 - 43

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 31

Figure 3 - 44

• Set the speed of BP_Motor_B to a value between –100 and 0 by clicking into the Speed text box
and typing in a number of your choice. (We recommend -30. This should be the same speed as
the other Run Motor node, except in the opposite direction)

• Remember that you need to have a negative value to move forward with Motor B since it
is flipped

Hook up all the code:

• Click and drag a (white) wire from the Run Light Sensor with Threshold node’s <= Threshold
pin to the Run Motor node Input pin

• Click and drag a (white) wire from the Stop Motor node output pin to the Run Robot node
input pin

Look at your code to be sure that it looks like Figure 3-45:

• Compile and Save

• Your code should look like Figure 3-46. You can experiment with the speed values and the choice
of Coast ON or OFF as you test your robot

Figure 3 - 45

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 32

Figure 3 - 46

• Remember to Compile and Save every time you add code!

• Click the Map_3-1_FollowLine tab to return to the map.
• Position your robot to be at the beginning of the path, left of the black line, on the white border
• Press 1 key to zoom out to see the entire path
• Play the game
• Experiment with changing the speed values and test your code to see how well your robot

performs the correct actions accurately

Observe the results:

Try the robot several times, noting your robot starting position each time you play it, and then note
your robot’s actions in relation to where it started from. Remember to try it two or more times, as
actions will vary slightly.

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 33

CHALLENGE

Continue to refine your sensor location on the robot, the robot’s starting position, and the code until
your robot can follow the path line all the way to the end of the path.

• Troubleshoot by editing the code until your robot is successful in moving away from the line if it
sees it. Use the following questions to guide your debugging:

• What happened when the robot approached the line? Did it stay on the line?
• Make corrections until the robot turns away from the line if it is on it

• What happened when the robot left the line? Did it look for the line again?
• Make corrections until the robot turns towards the line if it is NOT on the line

• Did the robot move too fast and get lost along the way? Is it turning circles far away
from the path?

• Did it move forward along the line?
• Find the values that give the most reliable results

Hints:

• If you are having trouble, try lowering your speeds so the robot can turn more accurately
• Experiment with the robot’s starting position, left to right, and including the light sensor’s height

above the path

Note: The robot will stop at its destination. This activity’s current robot model will stop when it hits the
Blocking Volumes box, which is an invisible wall. We do not have to code this action.

EXTENSION ACTIVITIES

Multiple Light Sensors

How can we make the line-following action a smoother motion (without a lot of “wiggling” back and
forth)? Consider the use of two sensors to make the movement smoother.

Where should each of the sensors be placed?

• Move the first light sensor
• Place a second light sensor
• Make sure to calculate the thresholds when adding or moving sensors

If we use a second light sensor, how will the code change for each sensor’s instructions?

• Can we reuse any of our existing code?
• Could we now have three states? For instance, See line with left sensor, turn left; see line with

right sensor, turn right; and see no line, go straight.

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 34

Sensor Locations for Using Two Sensors:

Speed

• Speeds will be up to the user to work out
• How fast can you go?
• What new problems arise when adding speed?

New Coding Technique

• Learn about using a sequence command for running two sensors simultaneously, or close
enough to the same time to make them both run at the same time, rather than one at a time

• Conditional statement using the threshold test of a light sensor

• Looping settings: where to start, where to end, how to run for unlimited repetitions

Figure 3 - 47

Figure 3 - 48

Figure 3 - 49

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 35

Review

• Understanding the need for sensors, and how they analyze input
• Understanding sensor effectiveness when placed in different positions on the robot
• Understanding the use of a threshold to convert a range of sensor values. The sensor then uses

a Boolean to execute along a branch
• Understanding coding commands that help sensors determine robotic movement
• Coding connections: conditional statement using the threshold test. Using loops to repeat

actions
• Notes and demonstrations of challenges, success, and understandings

RESOURCES

• Observation log – a blank one, and one for the Extension Activity

https://cdn2.unrealengine.com/observation-log-4b8c488ce203.pdf

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 36

ASSESSMENT

Rubric

Concept Distinguished Proficient Competent Developing

Robot Design
concepts

Can explain robot
sensor components
and how they work to
others. Project. Project
demonstrates use of
sensors in lesson, and
the best positions on
the robot. Definitions
of components
are exhibited, by
demonstration or in
student documentation.

Demonstrates use of
sensors on the robot.
Full understanding of
robot components is
indicated to teacher.

Can make robot respond
to sensors, does not
provide meaningful
understanding of
sensors. Basic
understanding of
hardware components
demonstrated.

No evidence of
understanding robot
sensors and how
they function. No
understanding of
hardware components
demonstrated.

Software concepts Complex command
combinations
and project goals
demonstrated. Can
explain command
groups needed for
using sensors, sensor
position, and desired
resulting robot position
or action. Commands
or groups of commands
are demonstrated
by presentation or
documentation.

Student understands
command groups
needed for using
sensors, sensor
position, and desired
resulting robot position
or action. Commands
or groups of commands
mentioned in student's
presentation.

When prompted,
student has basic
understanding of
commands needed for
using sensors, sensor
position, and desired
resulting robot position
or action, but may
not be presented in
demonstration.

No evidence of
understanding
commands and how
they function. No
inclusion or mention of
commands in student's
presentation.

Coding concepts Can debug code
errors. Complex
code combinations
and unique use
demonstrated. Can
explain codes from
most sections. Codes
are included in student's
demonstration or
documentation.

Demonstrates
understanding of
default settings,
loops, and conditional
commands. Student
references at least
one of each command
type code in their
presentation.

When prompted,
student has basic
understanding of
codes, but may not be
mentioned in student's
presentation.

No evidence of
command codes and
how they function. No
inclusion or mention
of codes in student's
presentation.

Real-world concepts Has innovative ideas
to create real-world
uses of robots, coding,
and movement.
Demonstrates
understanding and
documents it.

Understands some use
of coding, movement,
and robot uses in
real-world applications.
Includes at least one
example in student's
presentation.

Basic understanding
of existence of coding,
movement, and robot in
real-world applications.
May be explained
verbally when prompted,
but may not be included
in presentation.

No evidence of
understanding real-
world applications using
coding, movement, and
robots.

Challenge Activity
(Line following
robot)

Demonstrates the
fully automated
line-following robot,
demonstrates coding
process iterations, and
provides documentation
of attempts, challenges,
and successes.

Coded a line-following
robot, with multiple
iterations of coding,
observation, and testing
during the building
process.

Basic understanding
of how a line-following
robot should work.
Was able to code some
elements of the line--
following robot.

Was not able to
demonstrate a line
following robot. Did not
understand how a line-
-following robot would
work.

 LET’S TRAIN VIRTUAL ROBOTS | LESSON 3: SELF-DRIVING CAR 37

S T U D E N T G U I D E

LET’S TRAIN
VIRTUAL ROBOTS

L E S S O N 3 : S E L F - D R I V I N G C A R

