
ICI Laflaque
Broadcast quality within a tight timeline

Image Courtesy of Productions Vox Populi 1 Inc.

Contents

1.	 The Show

—— History

—— Production Schedule

2.	 Switch to Unreal EngineC

—— Original Pipeline

—— Unreal Engine Pipeline

—— Tools Used

—— Original Pipeline

—— Unreal Engine Pipeline

3.	 Production Steps

—— Motion Capture

—— Layout

—— Importing Camera Data

—— Camera Switcher

—— Modeling

—— Shading

PAGE

4

7

8

10

11

13

14

14

14

15

17

17

18

20

20

20

—— Rigging

—— Extra Bones

—— FBX Export Issues

—— Organizational and Naming Issues

—— Animation

—— Animation with Texture Switching

—— Skin Color

—— Facial Animation

—— Use of Sequencer

—— Lighting

—— Rendering

—— Antialiasing

—— Rendering Quality Comparison

—— Editing and Delivery

4.	 Future Vision

5.	 About this Document

PAGE

21

22

24

26

26

26

27

30

31

33

33

33

35

36

37

39

2

ICI Laflaque: Broadcast quality within a tight timeline

ICI Laflaque
Broadcast quality within a tight timeline

The production team for ICI Laflaque, an animated weekly
political satire show, has worked with a real-time pipeline
since its inception in 2004. This workflow was developed out
of necessity. Each 30-minute episode includes brand new
scripts based on breaking news that need to be produced
within a 7-day turnaround time, from voiceover to animation
to final output.

From the start, real-time rendering (or near-real-time
rendering) was needed to meet this timeline week after
week. For 14 years, Vox Populi Productions produced
ICI Laflaque on this aggressive schedule by using near-real-
time rendering straight out of Autodesk MotionBuilder as
the final output.

After recognizing that Unreal Engine could give them a
great boost in visual quality, Vox Populi decided to switch
to Unreal Engine for the 2018-2019 season. This document
is about the changes Vox Populi made to the show’s
pipeline to use Unreal Engine for superior real-time output
while keeping intact the parts of their workflow that were
already optimized.

In addition to much higher visual quality for the show, the
production team also discovered other ways Unreal Engine
could speed up their work and leave more time for creativity.

3

ICI Laflaque: Broadcast quality within a tight timeline

The Show

4

ICI Laflaque: Broadcast quality within a tight timeline

The Show
ICI Laflaque is an award-winning French-language political
satire show. The show, which airs on the ICI Télé Radio-
Canada network, features a large cast of 3D animated
characters, both fictional and reality-based.

The star of the show is Gérard D Laflaque, a fictional
news anchor.

Each episode follows two storylines. The first is Laflaque’s
current affairs TV show, also named “ICI Laflaque”, where he
comments on the news of the day and interviews famous
political figures, and the second weaves in various fictional
stories that revolve around public personalities. Many of
the segments refer to real-life news that happened just a
week before.

Figure 1: Gérard D Laflaque on the set of his TV show with Radio-Canada news anchor Céline Galipeau

5

ICI Laflaque: Broadcast quality within a tight timeline

Figure 3: Former Montreal Canadiens player Dave Morissette and referee Ron Fournier discuss hockey

Figure 2: Céline Dion makes an editorial speech

6

ICI Laflaque: Broadcast quality within a tight timeline

Throughout his tenure as a political TV show host, Gérard
D Laflaque has interviewed a variety of guests including
Donald Trump, Barack Obama, Hillary Clinton, Kim Jong-Un,
President of France Emmanuel Macron, and a number of
Quebecois and Canadian politicians.

The show’s scripts are irreverent and witty, and reflect a
Quebecois point of view. When Laflaque asks USA President
George W. Bush to explain the USA’s electoral college voting
system, Bush replies that it’s simple: the candidate with the
most money wins. During an interview with then-Canadian
Prime Minister Stephen Harper about his stance on certain
issues, Laflaque examines the PM’s body with an X-Ray
machine and proceeds to show that Harper has no heart.

Other recurring sketches include the happenings at a local
liquor store named FLAQ, and parodies of Quebecois TV
game shows.

History

Gérard D Laflaque made his first public appearance in 1982
as a latex marionette. Back then, French-language public
television station Radio-Québec aired hilarious 75-second
vignettes of Laflaque’s commentary in the aptly named
La minute et quart à Gérard D Laflaque (The minute and a
quarter of Gérard D Laflaque). Laflaque’s name is inspired
by Gérard D. Lévesque, a prominent Quebec politician, but
with a twist—“la flaque” is French for “the puddle”.

The show’s concept, and Gérard D Laflaque himself, were
conceived by award-winning Quebecois political cartoonist
Serge Chapleau. After creating puppets for television,
and he turned his craft to creating the first marionettes
for these segments, including the original Gérard D
Laflaque puppet.

In time, the world of Laflaque got its own 30-minute show on
Radio-Canada with the name Et Dieu Créa... Laflaque (And
God created… Laflaque), which was eventually renamed ICI
Laflaque (Here is Laflaque). All the character design for the
show is based on Chapleau’s drawing style. Chapleau is still
active as a content producer for the show—he continues
to supervise model sheets for new characters, and also
approves show scripts.

Figure 4: Gérard D Laflaque as a latex puppet

7

ICI Laflaque: Broadcast quality within a tight timeline

When the Laflaque show started production in 2004, Vox
Populi developed a pipeline using motion capture and
MotionBuilder to animate and render the show, and OpenGL
for real-time rendering. The team used real-time previews
during production, and final output from MotionBuilder was
rendered in near real time.

The pipeline worked sufficiently well for producing a new
30-minute episode every 7 days. But after 14 years, Vox
Populi decided to upgrade the show’s look by switching to
Unreal Engine.

Production Schedule

In 2018, the Laflaque show is entering its 15th season.
The production team has always followed an aggressive
schedule for the 30-minute show. During the week, writers
are still producing scripts about news that happened a
few days or even hours before, and finished productions of
these scripts are included in the footage delivered to Radio-
Canada a few days later.

The annual production schedule follows this pattern,
regardless of the pipeline used:

•	 May-August: No episodes are produced. The team
writes and produces short sketches on “timeless
topics”, ones that traditionally repeat in Quebec and
around the world: global warming, family values,
unemployment, and so on. The production team also
works on new sets and characters that might be
needed, for example a newly elected head of a country
or a Canadian politician rising to prominence.

•	 September-April: Production of weekly episodes
comprised of short sketches. Roughly half the sketches
included in the weekly show are “timeless topics”
previously produced, while the other half, based on
recent news, are newly produced that week. Each
season is 20-30 episodes (the number varies from year
to year).

Figure 5: Serge Chapleau caricature of Canadian politician Gaétan Barrette

8

ICI Laflaque: Broadcast quality within a tight timeline

For the 2018-2019 season that started in September 2018,
the production team aimed to create an Unreal Engine
project containing 26 episodes, 100 characters, 50+
backgrounds, and more than 1000 props and specials1.
Each episode would be 30 minutes long, and produced on a
7-day schedule.

On Monday through Thursday of each production week,
the team meets to discuss the new scripts and whether
they can be produced by Friday. Action that would require
a new, complex 3D model might be rewritten to exclude
such a model. If a new minor character is introduced, the

team discusses whether existing models can be quickly
repurposed or whether the character could be represented
as a cardboard cutout.

As part of this challenge, the Vox Populi team sometimes
has to deal with “script emergencies” during the week
that leave them with only three days to produce a finished
sketch. Because of the show’s short turnaround time,
having a pipeline that’s responsive to these challenges is
very important.

Figure 6: Political commentator Mario Dumont rings the bell in protest of cannabis legalization

1 Vox Populi uses the term “specials” to refer to clothing, accessories,
and props selected for a specific character in a specific sketch. For a
recurring character, the team has many previously-modeled items to
choose from: outfits, hats, eyeglasses, etc. as well as props like pens,
cell phones, clipboards, and briefcases. Most of these items have their
own rigs. Choosing the specials for the character means fully outfitting
him/her for the sketch, including all accessories and hand props.

9

ICI Laflaque: Broadcast quality within a tight timeline

Switch to Unreal Engine

10

ICI Laflaque: Broadcast quality within a tight timeline

Switch to Unreal Engine
Vox Populi had been keeping an eye on Unreal Engine for a
few years as a possibility for a real-time rendering solution,
and was impressed by The Mill’s Blackbird project and ILM’s
use of Unreal Engine for final renders on Rogue One.

In 2018, Vox Populi partnered with Epic Games to explore
an Unreal Engine workflow that would replace their
existing real-time solution and give a boost to the show’s
visual quality.

Vox Populi envisaged a switch to an Unreal Engine pipeline
in two phases:

•	 Phase 1: Motion-capture and keyframe data (or just
animation data) sent to MotionBuilder, rendering in
Unreal Engine

•	 Phase 2: Live feedback of motion capture data in Unreal
Engine via the MotionBuilder LiveLink plugin

This document relates to the Phase 1 change. Phase 2 will
be performed at a future date.

For Phase 1, the team wanted to keep the show’s overall look
the same, but with an upgrade in visual quality—the show
would look better to viewers while still being recognizable as
the same show. With Unreal Engine, the team would be able
to use PBR (physically-based rendering) textures, which
are optimized to work with real-time lighting. Such textures
generally result in richer colors and a cleaner, smoother look
for renderings.

In addition, Vox Populi needed to minimize changes to
their existing workflow to avoid disrupting the entire
show with R&D. The goal was to develop a basic (and
solid) UE4 pipeline to replace their existing real-time
rendering process.

To ensure the new pipeline was robust, Vox Populi enabled
a side-by-side production with old and new workflows.

Comparisons of final output appear in the Rendering section
of this document.

Original Pipeline

In the original pipeline, Vox Populi already had several steps
worked out for maximum efficiency including modeling,
motion capture, and animation.

Throughout the show’s history, the team has modeled
characters and sets in ZBrush and 3ds Max, set up
basic rigging in 3ds Max, used a PhaseSpace system for
motion capture, and finished up rigging and animation in
MotionBuilder. There was no need to change these parts of
the pipeline to use Unreal Engine for real-time rendering.
And since the team was already very familiar with these
workflows, the switch to Unreal Engine wouldn’t impact the
time needed to perform these tasks.

The team had been using MotionBuilder OpenGL output
for previews and also final pixels. While previews could play
back in real time at 30 fps, final output could be generated
only at a less-than-real-time speed of 5-10 fps. By using
Unreal Engine, Vox Populi hoped to improve the quality of
previews and also the speed of final output.

11

ICI Laflaque: Broadcast quality within a tight timeline

 Figure 7: Linear MotionBuilder pipeline

12

ICI Laflaque: Broadcast quality within a tight timeline

Unreal Engine Pipeline

IIn the first phase, the team aimed to make the following
changes to the pipeline:

Shading - Shading would be done in UE4. In the original
pipeline, all shading was accomplished with textures painted
or edited in Photoshop, and materials were assigned in
3ds Max and MotionBuilder. The production team wished to
streamline this process by using Unreal Engine materials as
much as possible.

Rigging - The rigging process in MotionBuilder would remain
largely the same, with some tweaks to work efficiently when
imported into Unreal Engine.

Lighting - Since rendering would be performed in UE4, it
made sense to do all lighting in UE4.

VFX - In the show’s existing pipeline, VFX were created
separately in After Effects. With Unreal Engine, VFX could be
done concurrently with animation in UE4.

Compositing - By using the tools in Unreal Engine’s
Sequencer, compositing steps in the original pipeline could
be done directly in Unreal Engine.

Rendering - Animation previews are still done in
MotionBuilder, but the final rendering would be performed
with Unreal Engine instead.

The team also wished to easily swap out specials and
characters in UE4, and have access to the Camera Switcher
tool from MotionBuilder when importing to the Sequencer
camera options.

The Unreal Engine pipeline looks quite different from the
original pipeline, with a more parallel workflow between all
the production steps.

Figure 8: Real-time UE4 pipeline

13

ICI Laflaque: Broadcast quality within a tight timeline

Other benefits the Laflaque team realized from switching to
an Unreal Engine pipeline:

•	 Vox Populi was able to use the existing MotionBuilder
assets without much correction.

•	 In the original pipeline, the team used MotionBuilder’s
real-time preview capabilities to review animation in
its initial stages. Unreal Engine provides a real-time
GPU system for viewing, offering a much higher-
quality preview.

•	 Perforce could be used as an integrated tool to manage
the assets and split the work within the team.

Tools Used

Original Pipeline

Autodesk® 3ds Max® - Modeling, UVs, morph targets for
clothing and facial animation, rigging, skinning

Pixologic® ZBrush® - Character sculpting

Adobe® Photoshop® - Texture painting

Autodesk MotionBuilder® - Motion capture data processing
and classic animation, real-time previews and output

PhaseSpace® Motion Capture - Motion capture for
body motion

Adobe After Effects® - VFX, post processing, infographics

Avid® Media Composer® - Sound, final edits, credits,
deliverables

Unreal Engine Pipeline

Most of the tools of the original pipeline are still used in the
real-time pipeline, but a few are added or switched out to
maximize efficiency with Unreal Engine. Tools that are new
to the Unreal Engine pipeline, or those that have different
functions in the new pipeline, are listed below.

•	 Adobe Photoshop and Allegorithmic Substance Painter
and Designer - Material painting and authoring

•	 Autodesk MotionBuilder - Motion capture data
processing and classic animation

•	 Adobe After Effects - VFX, infographics

•	 Unreal Engine - Previews, post processing, final output

14

ICI Laflaque: Broadcast quality within a tight timeline

Production Steps

15

ICI Laflaque: Broadcast quality within a tight timeline

Production Steps
While some steps stayed the same with the new pipeline,
some steps changed substantially. The following table
summarizes the changes needed to optimize the original
pipeline for the new Unreal Engine pipeline.

Step Original Pipeline Unreal Engine Pipeline

Motion Capture PhaseSpace into MotionBuilder <no change>

Layout MotionBuilder MotionBuilder & Unreal Engine

Modeling ZBrush & 3ds Max <no change>

Shading 3ds Max & MotionBuilder Substance Painter in UE4

Rigging 3ds Max & MotionBuilder <no change>

Animation MotionBuilder No change to body/facial animation
process. Texture switching now
done in UE4.

Transfer to Unreal Engine <N/A> FBX

Lighting MotionBuilder Unreal Engine

Rendering MotionBuilder OpenGL Unreal Engine

Compositing and VFX After Effects After Effects & Unreal Engine

Editing and Delivery Avid Media Composer <no change>

Table 1: Summary of pipeline changes

16

ICI Laflaque: Broadcast quality within a tight timeline

Motion Capture

Vox Populi uses PhaseSpace as its motion capture system
for the Laflaque show. The system uses 34 Fujifilm X-E2
motion capture cameras with active markers.

The system was chosen for its balance of low cost and
accuracy—the Laflaque show features a lot of broad
motion as opposed to subtle movement. While the capture
data contains a small amount of noise that needs to be
corrected in MotionBuilder, the system amply serves the
production’s needs.

Layout

In the original pipeline, during the motion capture session,
the mocap data was streamed into MotionBuilder where it
was applied to the characters in a mocap layout scene that
included most of the actual final environment. This gave the
director the means to review everything in context.

The director then reviewed the action in this MotionBuilder
scene, setting up cameras and using the camera switcher
to delineate the shots. After the cameras were set up,
remaining assets (accessories) were added to the scene.

Figure 9: Laflaque Mocap Scene

17

ICI Laflaque: Broadcast quality within a tight timeline

For the production, it was essential to be able to use
the MotionBuilder cameras, since all animation is done
in MotionBuilder. For this reason, the team needed a
very accurate conversion of MotionBuilder’s cameras to
UE4’s cameras.

The team used the camera import tool and some
custom adjustments to keep a similarity with the
MotionBuilder cameras.

Importing Camera Data

In MotionBuilder, when creating a camera, a point of interest
(look-at point) is generated automatically. This point, a null
attached to the camera, manages the camera’s rotation and
field of view (FOV).

When exporting/importing FBX to UE4, the point of interest
isn’t converted, meaning the camera’s rotation is lost.
The solution was to plot each camera’s rotation using a
custom Python script in MotionBuilder before export, and
to set a custom FBX property in UE4 to hold the focus
distance value:

•	 In Editor Level Sequences / Track Settings /
FBX Setting:

•	 Add --- FBX Property: FocusDistance

•	 Add --- Component Name: CameraComponent

•	 Add --- Property Name: FocusSettings.
ManualFocusDistance

Figure 10: Camera Interest in MotionBuilder

18

ICI Laflaque: Broadcast quality within a tight timeline

Figure 11: FBX Export Setting

This setup takes the Focus Distance from the camera
parameter in MotionBuilder, which then gets imported into
the UE4 Sequencer.

19

ICI Laflaque: Broadcast quality within a tight timeline

Camera Switcher

MotionBuilder’s camera switcher and story tools were an
important part of the original pipeline. In switching to the
new pipeline, one of the biggest needs was to convert the
Camera Switcher data in MotionBuilder to work with the
Camera Cuts feature in UE4.

The Unreal Engine developer team integrated the option
to use MotionBuilder Camera Switcher data and update
the data in the Camera Cut Track in Sequencer. By
allowing Unreal Engine to understand camera IDs from
MotionBuilder, the team could have an alignment of camera
setups between packages where Sequencer will reflect
MotionBuilder’s Camera Switcher.

Maintaining the sequence cut from MotionBuilder’s Camera
Switcher simplifies the reconstruction of all the shots in
UE’s Sequencer tool.

Modeling

The team models characters with ZBrush and 3ds Max,
then uses 3ds Max to separate body parts such as
teeth and clothing. Each character consists of around
160,000 triangles.

As for the sets, the main set is the ICI Laflaque studio
where Gérard performs his interviews. Other sketches use
interiors like a liquor store, a grocery store, an office, and
the Parliament building in Quebec City, along with exteriors
such as parks, parking lots, a downtown street, and a
back alley. Many of theses sets were already built over the
show’s lifetime.

In the new pipeline, the models are created in the same way
as in the original pipeline. The caricature drawing (model
sheet) is used to make a ZBrush version and the model is
then finalized in 3ds Max.

New characters are produced year-round, and the team
tries as much as possible to repurpose existing elements,
particularly clothing and hands. Existing characters are
updated by adding new hairstyles, textures, props, etc.

Shading

In the original pipeline, the team assigned textures
created or edited in Photoshop to models in 3ds Max and
MotionBuilder. As part of the upgrade to an Unreal Engine
pipeline, the team switched to using the Allegorithmic
Substance Tools.

Figure 12: Motion Builder’s Camera Switcher

Figure 13: Textures created with Allegorithmic Substance Tools

20

ICI Laflaque: Broadcast quality within a tight timeline

Substance allows the team work on PBR materials as a
whole rather than separate textures, most of which didn’t
exist in the previous pipeline. The Substance materials
are then exported to individual textures for Unreal Engine
to use.

During the initial tests, the team realized it would need
to reprocess certain textures to conform to Unreal
Engine’s formats. File types, resolutions, and new shading
possibilities needed to be taken into account.

Transparent objects like windows and eyeglass lenses
were initially created using a translucent shader with
refraction, but using refraction caused some rendering
issues. The team instead used shading tricks to emulate a
refraction effect.

The team also made use of texture switching in Unreal
Engine for some of the animation, which is described in the
Animation section of this document.

Rigging

Characters are rigged and skinned in 3ds Max, then
exported to MotionBuilder.

Character bodies are rigged with a combination of bones
and Dummy objects (nulls). Character heads are given
around 50 morph target shapes. Some of the accessories
also have morph target shapes to facilitate animation.

The FBX stack for a character mesh exported from 3ds
Max to MotionBuilder contains the geometry and the
MeshSmooth, Morpher, and Skin modifiers. In MotionBuilder,
the skeleton rig is a standard Control rig.

Figure 14: Laflaque character shading in UE4

21

ICI Laflaque: Broadcast quality within a tight timeline

The character facial rig includes shapes and clusters.
Markers are added in MotionBuilder as needed to control
secondary animation (effectors for IK channels, etc.).
Several types of constraints for the animation of the eyes,
clothes, and other secondary elements are also added.

Each of the characters use the same hierarchy
and nomenclature, but each has its own unique
MotionBuilder Namespace.

Extra Bones

One of the defining factors of the Laflaque characters is
the thousands of specials (props and accessories) that can
be added to the basic character templates. The secondary
motion from these specials is part of the personality and
humor of the Laflaque show.

One example is the turban and beard added to the
Pierre character. The bones added to these specials are
parented to the character, giving the opportunity for
secondary motion.

Figure 15: Laflaque character hierarchy in 3ds Max

22

ICI Laflaque: Broadcast quality within a tight timeline

Over the 15-year CGI development of the show, hundreds of
versions of characters have been created and thousands
of specials have been added to them. In addition, several
versions of any one accessory or prop might exist.

A high-poly version of a prop would be developed for
close-ups and a low-poly version for distance shots or
quick action, but the rigs of each version might not match.
When MotionBuilder was the only application used for
animation and rendering, these variations caused no
particular difficulties. However, these variations brought
unique complications to the new UE pipeline and to the
management of different skeletal rigs. If the character and

special each have their own rig, both these rigs had to be
linked to the character rig before export to UE.

Vox Populi’s original approach was to import the character
and prop hierarchies separately, then use the Set Master
Pose Component in Unreal Engine to set up a parent/child
relationship between the character’s and prop’s hierarchies
using Blueprints.

However, the connection in a Blueprint with Set Master Pose
didn’t work for this purpose as the extra bones became
invalid. To use the Set Master Pose Component, the same
hierarchy of bones was needed across all skeletal meshes.

Figure 16: Pierre character base plus beard and hat specials with extra bones for animation

23

ICI Laflaque: Broadcast quality within a tight timeline

The team needed to re-export the skeletons with the added
bones from MotionBuilder with the animation, and import
them as new Skeletal Meshes in Unreal Engine.

FBX Export Issues

Combining older assets with new caused issues with FBX
transfer from MotionBuilder to UE. Sometimes, UE would
report an error on import and the arms would appear to be
disconnected from the rest of the hierarchy. Vox Populi was
able to resolve these problems by putting each character in
T-pose and/or setting a TRS keyframe on all nodes before
exporting from the DCC.

In MotionBuilder, the best solution is to set up the T-pose
manually. In some cases, the option Use T0As Ref Pose in
the UE4 importer tool can automatically correct the problem.

Figure 17: Select Skeleton in import FBX settings

Figure 18: Select Use T pose in import FBX settings

Figure 19: Character’s bone hierarchy in MotionBuilder

24

ICI Laflaque: Broadcast quality within a tight timeline

Figure 20: Error in bone hierarchy. Head attached to an old body

25

ICI Laflaque: Broadcast quality within a tight timeline

Organizational and Naming Issues

In the original MotionBuilder pipeline, each character had
its own Namespace but might have two or more sub-
references to different hierarchies. For example, a character
named Foule might have a Namespace that looks like the
image below, with two different skeletal hierarchies named
Reference 1 and Reference 2.

This method of delineating characters and skeletons didn’t
port well to Unreal Engine for a couple of reasons:

•	 Internally, MotionBuilder stores these sub-references
with a colon (:) between the Namespace name and the
reference name. For example, the first sub-reference in
the image above would be stored as Foule:Reference 1.
This naming convention doesn’t work for export via FBX
format to Unreal Engine.

•	 When the FBX file from MotionBuilder is imported,
Unreal Engine interprets the entire Namespace as one
skeleton. In other words, if the Namespace contains
two or more skeletons, they’ll be combined into one
hierarchy upon FBX import.

A better practice is to set the skeletons as sub-levels
just below the Scene level. Unreal Engine will read these
hierarchies as separate skeletons.

Animation

The new pipeline uses MotionBuilder for all animation
steps. Mocap animation is corrected and saved in FBX
format for import to Unreal Engine. Once in Unreal Engine,
animation data is embedded in the characters directly in
Sequencer tracks.

The character bodies are animated in MotionBuilder with
motion capture data, while faces and hands are animated
manually. Props are animated manually or with mocap.

Each scene contains 200 to 6,000 frames at 30 fps, usually
animated by a single animator per scene.

Animation with Texture Switching

Some shots required the switching out of textures, either for
an entire shot or repeatedly over the course of an animated
sequence. The Laflaque team had a workflow for performing
such tasks in MotionBuilder, but wished to implement these
techniques in Unreal Engine instead.

Figure 22: Two skeleton assets with hierarchy division

Figure 21: Hierarchy items with namespace

26

ICI Laflaque: Broadcast quality within a tight timeline

Skin Color

For changing skin color, for example the darkening of skin
due to exposure to fire, the Laflaque team had a workflow
in the original pipeline using texture blending with custom
sliders in MotionBuilder.

As part of changing their pipeline, the team needed to set
up a similar workflow in Unreal Engine. They did so using the
Material Parameter feature, using the following steps:

•	 Create a new Material Parameter asset in Material
Textures/Material Parameter Collection.

Figure 23: MotionBuilder’s Texture Switcher Figure 24: Select Material Parameter Collection in the Content Browser

27

ICI Laflaque: Broadcast quality within a tight timeline

•	 Add Scalar Value with proper variable name.

•	 Go to the specific Material Editor.

•	 Add a collection parameter, and choose your Material
Parameter Collection and variable.

Figure 25: Click the plus symbol next to Scalar Parameters or Vector Parameters

Figure 26: Scalar Parameter Material Expression node in Material Graph

28

ICI Laflaque: Broadcast quality within a tight timeline

•	 Create a Linear Interpolate (Lerp) node and add the
collection parameter node to Alpha. You can also use
Multiply or other kinds of nodes, depending on the
desired blend method.

•	 Add the Material Parameter and variable in Sequencer.

Figure 27: Material Expression Parameter node in Material Graph

Figure 28: Material Parameter Collection

29

ICI Laflaque: Broadcast quality within a tight timeline

Facial Animation

In some sequences, the team animates facial expressions
and dialogue by switching textures. To perform this type
of animation with the new Unreal Engine pipeline, the team
elected to set up texture switching in MotionBuilder as
with the original pipeline, and then redo the setup with a
Blueprint in Unreal Engine and import just the animation
curves. This approach retained the familiar workflow while
still making the animation available for fine-tuning in
Unreal Engine.

To set up this type of texture switching In MotionBuilder, a
layered texture with more than 80 textures is applied to the
head. Each texture is for a different area of the face: eyes,
eyebrows, mouth, wrinkles, glasses, and so on. The base
texture is the background color, and the topmost texture
is the glasses, if any. These two textures are static (not
animated) and the remaining textures are animated using
visibility and TRS keys2. Up to this point, the workflow is the
same as the original pipeline.

Once the animation keys have been set, TRS and visibility
keys must be set for all the texture channels. This part of
the process is newly added for the new pipeline.

Next, the animation is exported to FBX, then imported
to Unreal Engine with the Import Custom Attribute and
Material Curve Type options checked. This brings in the
animation curves.

In the Material Editor, a material expression was set with the
exact name of the animation curves. For the Transition Rule,
Blend Logic was set to Linear Interpolation to interpolate
between two textures based on a height map and a
transition phase value. With such a setup, the parameters
change in connection with the animation curves.

The team considered using the Heightlerp function, but that
setup would have required some work to separate the eyes
from the mouth and other facial features that would have
shared the same height value. For this reason, they settled
on using Linear Interpolation.

The final iteration of the facial rig uses the actual alpha
values of each texture in MotionBuilder, which were
transferred into custom curves. Finally, those were used
as the Alpha input of each Lerp in the graph. The 80 facial
textures all share the same sampler to avoid the technical
limitation of 16 samplers.

2 InMotionbuilder, a TRS key sets translation (position), rotation,
and scale.

Figure 29: Animation curves in Editor

Figure 30: Animation Logic in Material Editor

30

ICI Laflaque: Broadcast quality within a tight timeline

Use of Sequencer

The team relied on Unreal Engine’s Sequencer for many of
their tasks that were previously done in MotionBuilder—
production, previs, viewing, and rendering.

In the Sequencer, the team defined a Persistent Level
consisting of sublevels in order to facilitate the work (see
Table 3). The Level Visibility track in Sequencer is used to
manage the visibility of a group of objects. The team found
the ease of hiding and unhiding objects to be very useful
during production.

The following figure shows an example of tree nomenclature
of an episode in sequence:

Figure 31: Laflaque Sequencer nomenclature

31

ICI Laflaque: Broadcast quality within a tight timeline

The team made use of Unreal Engine Sequencer to trigger
events during play. This automated some of their production
processes, such as changing material parameters.

To set up the Blueprint variable to be changed directly
in Sequencer:

•	 Create an Actor Blueprint.

•	 Create a Custom Event, and enable Call in Editor.

•	 Create a variable, and enable Expose to Cinematics.

•	 Add the Actor Blueprint and its variable in Sequencer.

•	 In Sequencer, create an Event Track.

•	 In Sequencer, create a key in the Event Track at
the appropriate time. Right-click on the key, select
Properties, and under Event Name, enter the
appropriate event name.

•	 In Sequencer, right-click on the Event Track and
select Properties. Under Event Receiver, choose the
appropriate Blueprint. Otherwise, the event keys will
trigger only the Level Blueprint.

Figure 34: Create custom event

Figure 32: In Sequencer, Create Event Track

Figure 33: Create event key in the event track

32

ICI Laflaque: Broadcast quality within a tight timeline

Lighting

Lighting in MotionBuilder is limited, which meant the team
had to use a number of workarounds to retain a real-time
workflow in the original pipeline. Environments were lit in
3ds Max, and lighting was baked directly into textures. Only
characters and animated props were lit in MotionBuilder.
The baked environment textures limited the team’s ability
to change or adjust lighting during the animation and visual
effects phases.

The team sought to improve the show’s lighting workflow
by using Unreal Engine lights, which are optimized for
real-time rendering. In the new Unreal Engine pipeline, both
environments and animated elements are lit with the same
lights, and the team now has the ability to adjust lights at
any time during production.

For realistic lighting with high-fidelity rendering, static
lighting is the best approach in Unreal Engine. This provides
access to features traditionally done with ray tracing, such
as GI, Final Gathering, and area lights. It is much easier to
achieve realistic lighting without needing to mimic complex
behaviors manually using extra lights.

If realism is not a requirement (as with a stylized scene),
dynamic lighting can be used to take advantage of
interactive feedback when lighting the scene.

For different rendering features, UE4 has several techniques
for approximating lighting and shadows. For static lighting,
there are no limitations in terms of supported light types
or rendering features—basically everything available in the
Editor will work once it’s baked.

Dynamic lighting, on the other hand, presents some
challenges. The following are few examples of techniques
for dynamic shadows:

•	 For sharp shadows, use shadow maps. This works with
all object types.

•	 For soft ray-traced shadows, use Distance Field
Shadows. This does not work well with skeletal meshes.

•	 For soft shadows on characters, use Capsule Shadows.
This helps to add contact shadows around characters’
feet.

Rendering

And finally, we get to the main point of Vox Populi’s switch
to Unreal Engine: rendering. In the original pipeline, the team
used MotionBuilder with OpenGL for real-time previews, and
to render final output in near-real-time. Each of the scenes
were rendered in a single pass in MotionBuilder using the
QuickTime MOV DNxHD codec with audio.

Antialiasing

There are three antialiasing techniques used in game
engines: MSAA, FXAA, and TemporalAA. Usually TemporalAA
is recommended, but it can generate some artifacts
depending on its performance curve, and can result in
blurriness. The FXAA method gives excellent performance in
terms of quality but does not allow the use of depth-of-field
and motion blur, which limits post processes.

The Laflaque team chose to use the TemporalAA method
in Unreal Engine. However, in their first tests, TemporalAA
resulted in noise on straight lines, as shown in the
following image.

33

ICI Laflaque: Broadcast quality within a tight timeline

After some tests, the team defined custom adjustments in
the Console command to optimize rendering.

Below is an example of a command Console setup. The
team usually tweaks the settings on a case-by-case basis,
but the settings below provide a baseline.

•	 r.MotionBlurSeparable = 1

•	 r.MotionBlurQuality = 4

•	 r.Streaming.PoolSize=1000

•	 r.ScreenPercentage = 200 (Note that increasing this
setting from 100 to 200 will increase render time by 4x.)

•	 r.PostProcessAAQuality = 6

•	 r.Tonemapper.Sharpen = 1

•	 r.TemporalAASamples = 4

•	 r.TemporalAACurrentFrameWeight = 0.2

•	 Scalability Settings on the highest setting (Cinematic)
for best quality

•	 In Sequencer’s Rendering Options, uncheck the Use
Compression option for best quality

Figure 35: Without console adjustment

Figure 36: With Console adjustment

Figure 37: Cinematic quality setup

34

ICI Laflaque: Broadcast quality within a tight timeline

Rendering Quality Comparison

Here are the comparative results of renderings from
MotionBuilder OpenGL vs. Unreal Engine.

Figure 38: Scene rendered with MotionBuilder

Figure 39: Similar scene rendered with Unreal Engine

35

ICI Laflaque: Broadcast quality within a tight timeline

The images from Unreal Engine have richer colors and
a cleaner look. To Laflaque’s viewing audience, these
technical improvements are transparent—the show just
looks better than before, making for a more enjoyable
viewing experience.

Editing and Delivery

In both the original pipeline and new pipelines, the rendered
frames pass to a final editing process in Avid Media
Composer, and the audio is mixed in Pro Tools. Composition
of additional layers like add-on screens, textures, particles,
etc. are done with After Effects.

When the episode is finished, the final version is delivered to
the Radio-Canada broadcast network as a Quicktime MOV
file compressed with the Avid DNXHD 110 codec, using 29.97
FPS Drop Frame in 720p.

36

ICI Laflaque: Broadcast quality within a tight timeline

Future Vision

37

ICI Laflaque: Broadcast quality within a tight timeline

Future Vision
Phase 1 of the switch to a UE4 pipeline with the Laflaque
show has been set up to make production as familiar as
possible while avoiding radical changes in the original
pipeline. The future vision for Phase 2 would be to optimize
the parallel use of Unreal Engine and MotionBuilder.

Access to MotionBuilder Live Link will give productivity
upgrades. Instead of using two MotionBuilder scenes,
mocap data would link directly to an Unreal layout scene
with basic characters. This solution will enable real-time
viewing of the scene at the very beginning of motion
capture with PhaseSpace. MotionBuilder Live Link will also
serve as a live feed for animators so they can correct the
capture in MotionBuilder and view corrections in real time in
Unreal Engine.

Vox Populi also looks forward to taking advantage of the
Unreal Engine plugin for Shotgun integration, and new
features like ray tracing solutions.

38

ICI Laflaque: Broadcast quality within a tight timeline

About this Document

39

ICI Laflaque: Broadcast quality within a tight timeline

About this Document
Production Schedule

Pre-Production: Feb 2018

Production: June 2018

Team Composition

Roxane Boutet, Producer

Yves St-Gelais, Executive Producer

Richard Belec, Production Director

Tom Wilczynski, Technical Director

Cédric Dubois, Character Modeling Supervisor and
Lead Artist

Francois Bissonnette, 3D artist and Technical Director for
Unreal Engine

Hugo Brodeur, Artistic Director, Environments

Marco Marandola, Senior Lighting and Rendering Artist

Mathieu Langlois, 3D Director

Approximately 10 animators and layout artists

Editorial Team

Author

David Hurtubise

Editors

Michele Bousquet

Brian Pohl

Contributors

Tom Wilczynski

Cédric Dubois

Francois Bissonnette

Homam Bahnassi

Original images and data supplied by
Productions Vox Populi 1 Inc.

40

ICI Laflaque: Broadcast quality within a tight timeline

