
nDisplay Technology
Limitless scaling of real-time content

Image courtesy of Lune Rouge Entertainment

Contents
PAGE

1. Introduction 3

2. Background 4
Types of display systems 5

Use cases 6

3. Technical considerations 7
Display mechanisms 7

Synchronization 8

Post effects 10

Existing technology 10

System specification 11

4. nDisplay solution 12
Structure 12

Integration with Unreal Engine features 12

Limitations 15

5. nDisplay workflow 17
Configuration file 18

nDisplayLauncher and nDisplayListener 21

UE4 project-based considerations 22

6. Next steps / future vision 23

2

nDisplay: Limitless scaling of real-time content

Introduction
All industries using real-time graphics on large displays have a common challenge of scaling and synchronizing real-time
content on a wide variety of display media. Achieving success in this endeavor has been, to date, very challenging. The
problems lie in a lack of sufficient processing power, communication difficulties between proprietary systems, and the
need to make content that will play back in real time at sufficient speed.

To address these industry-wide problems, Epic Games researched and considered possible solutions for scaling real-
time content. These efforts led to the development of the nDisplay system, which works with Unreal Engine to render 3D
content simultaneously to multiple displays in real time.

In this document, we will look at the research behind the design and development of nDisplay technology, and how this
research led to features that address these issues. We will provide an overview of currently available technology, current
limitations, and plans for future development.

Image courtesy of Wolf + Rothstein

 “All industries using real-time graphics on large displays
have a common challenge of scaling and synchronizing
real-time content on a wide variety of display media.”

3

nDisplay: Limitless scaling of real-time content

https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/index.html

Background
Ever since computer graphics were introduced into the
media world, there has been a desire and requirement to
scale rendering capabilities in terms of increased resolution
and reduced processing time. One approach has been to
distribute rendering tasks over network clusters of multiple
PCs (“render farms”), or multiple processor cores and
software threads.

Then came the era of games and real-time graphics. Such
graphics must be rendered at a rate of about 16 ms/frame
to achieve a playback speed of at least 60 fps, the accepted
rate for perceived realism. The development of dedicated
graphics processing units (GPUs) has gone a long way
toward achieving this.

However, much of this development has focused on
increasing overall power through the addition of processing
cores and available onboard memory, while increasing the
speed at which they run. In terms of supported features,
constantly increasing the sophistication of GPUs is
effective for improving visual quality, but does not address
the problem of driving simultaneous displays at increased

resolutions. Also, multi-GPU solutions have their own
limits—they do not properly distribute and scale real-time
rendering beyond the scope of one PC.

Industries outside games that are interested in projecting
to highly complex display systems now need to look beyond
game technology to find solutions. Reliable solutions for
distributing pre-rendered content, such as video playback
applications, have been on the market for a very long time.
However, the same cannot be said for the distribution of
real-time content; no single solution exists that offers an
effective mechanism to scale real-time and generative
content to arbitrary sizes.

Display setups with multiple screens of various shapes and
curvatures, and with various file formats and resolutions,
are just a few of the complexities faced by those attempting
scaled real-time displays. In addition, content providers
for real-time displays are constantly pushing the envelope
of sophistication and realism in visuals, which means
hardware needs to be updated frequently to keep up with
the demand.

Image courtesy of Reynaers Aluminium

4

nDisplay: Limitless scaling of real-time content

Types of display systems

Before we dive into the needs for scaled rendering, let’s
review some of the hardware and usage involved.

Display solutions for either playback or real-time content
take two forms:

• Monitors or LED screens, where image data is
transferred typically via a cable to one or many
processors driving the pixels

• Projection, where imagery is reproduced on an arbitrary
surface via multiple film projectors

The topology of the display system can fall into any of a
number of categories:

• Matrix of LED screens
• Very large LED screen, curved or flat
• Flat-screen projection
• Projection on dome or curved surface
• Cave automatic virtual environment (CAVE) projection-

based multi-sided immersive environment
• Complex displays utilizing two or more of the above

These displays might also have a requirement for
stereoscopic vision, or for synchronization and tracking
capabilities to accurately represent the user point of view in
3D space.

Industries that use high-end complex displays include:

• Virtual production - In-camera VFX with projection or
LED imagery in place of green screen

• Architecture and manufacturing - CAVE or powerwall1 for
design review

• Simulation-based training - Tilted walls or curved
screens to immerse the participant in the environment

• Entertainment - Planetariums and theme park rides with
projection domes

• Live events and permanent installations - Displays using
projection or LED screens with extraordinary sizes and
resolutions that require a large number of servers to
drive content simulation and playback

Image courtesy of Wolf + Rothstein

1A powerwall is a large viewing surface, either LED or projective, that displays imagery
at a high enough resolution for the viewer to see detail even when close to the screen.
Powerwalls are typically used for collaborative applications such as architectural or
engineering design review, or for installations such as museums where viewers can
get close to the display. Due to the amount of data required for such high resolution
imagery, a powerwall system is driven by multiple PCs. A projective powerwall requires
multiple projectors, while an LED powerwall can consist of one or many LED screens.

5

nDisplay: Limitless scaling of real-time content

Use cases

For context, we show here some uses cases for scaled display of real-time content. Epic assisted these partners in their
endeavors alongside PixelaLabs, a team of rendering, VR, and CAVE specialists that provide nDisplay integration services
for large-scale or customized projects.

Live event / Dome projection

In 2018, hip-hop performer Childish Gambino performed his
Pharos show, which featured real-time projections inside
an enormous dome throughout the concert. The team
rendered a 5.4K by 5.4K image on five machines, then split
into the image into a fisheye and sent it to 12 projectors.

Live event / Complex display

PY1 is a traveling 81-foot pyramid-shaped venue designed to
serve a variety of entertainment purposes. The projection
system uses 32 projectors, and rental of the venue includes
lasers, kinetic stage elements, and special effects.

CAVE / Architectural visualization
Simulation-based training

Reynaers Aluminium installed AVALON, a five-sided
CAVE, at their headquarters in Duffel, Belgium to display
architectural design and window installation training.
Viewers wear active VR glasses to see the imagery in 3D
with a natural field of view. The AVALON system uses 25
projectors and 14 workstations.

Image courtesy of Wolf + Rothstein

Image courtesy of Lune Rouge Entertainment

Image courtesy of Reynaers Aluminium

Virtual production / Flat LED

Lux Machina constructed an LED volume consisting of
four LED panels (three walls and a ceiling) to surround
actors and props, and to light them and provide reflections.
The view through the physical camera shows real-
world elements seamlessly integrated into the real-time
CG environment.

6

nDisplay: Limitless scaling of real-time content

https://pixelalabs.com/
https://www.unrealengine.com/en-US/spotlights/childish-gambino-mesmerizes-fans-with-real-time-animation
https://www.unrealengine.com/spotlights/childish-gambino-mesmerizes-fans-with-real-time-animation&sa=D&ust=1574239038155000&usg=AFQjCNHsm2AbNxCM3p_W7x3pa7NdgMwXqA
https://www.unrealengine.com/en-US/spotlights/reynaers-aluminium-makes-design-accessible-with-vr-cave&sa=D&ust=1574239038221000&usg=AFQjCNF-FMkpVeCRaHy3KY4Nlvf8XNSvLg
https://py1.com/en/
https://www.unrealengine.com/en-US/spotlights/reynaers-aluminium-makes-design-accessible-with-vr-cave
https://www.luxmc.com/

Technical considerations
To begin our inspection of the challenges of distributing
real-time content, let’s take a closer look at the various
technical considerations involved.

Display mechanisms

Large-scale real-time displays show multiple sections
of a single frame at a time. How these multiple sections
are stitched to form one coherent image depends on
the size and shape of the display, and the underlying
display technology.

Projection screens

With a projective setup, images are projected onto surfaces
with projectors. The frame section from each projector
overlaps adjacent sections for smooth blending, usually by
around 15-20% of the section size. Projection screens for
real-time display can take any of several forms:

• Planar or curved - Projectors are stacked horizontally,
vertically, or in both directions for larger setups or when
brightness requirements are higher. Content overlaps
and is blended in the overlap zone.

• Spherical or pyramidal - A complex array of projectors
covers the entire surface with often significant overlap
for increased brightness.

• Arbitrary shapes - Virtually any shape works as a
projection surface, provided the image is visible at
sufficient brightness.

Figure 1: Planar surface and projector setup

Figure 2: Curved surface and projection setup

Figure 3: Spherical or dome surface and projector setup

Figure 4: Examples of flat, curved, and spherical projection screen
setups. [Images courtesy of Scalable Display Technologies]

OVERLAP + BLEND ZONE

PROJECTOR

OVERLAP + BLEND ZONE

PROJECTOR

MULTIPLE PROJECTORS AND OVERLAPS

7

nDisplay: Limitless scaling of real-time content

LED screens

LED screens were, until recently, always flat, and any
curved shape was created by placing flat screens at a
slight angle to one another. Nowadays, LED screens can
be designed to almost any form, shape, resolution, or pixel
pitch. Flat LED screens can also be arranged in complex
patterns to form three-dimensional displays.

Because the image data for an LED screen comes via a
cable rather than a projector, the seams between image
portions can be precisely lined up, and thus overlap/
blending between portions is not necessary.

Synchronization

Naturally, synchronization is a vital part of displaying
multiple sections of real-time content over a large display.
All systems within the render/display ecosystem must
adhere to strict timing, measured in milliseconds, to
produce the illusion of a seamless display.

Multi-display setups often require syncing capabilities at
both the software and hardware levels. Not only should
the generated content be ready at the same time on all
PCs using the same timing information for simulation, but
the display swap (the changing out of the current image
for the next image in the video card buffer) needs to also
happen at the correct time to prevent “tearing” artifacts in
the display.

For VR and other types of stereoscopic displays, the issue
of synchronization applies doubly since the two different
frames, one for each eye, must coordinate perfectly.

Here we will discuss the aspects of synchronization that
are most relevant to nDisplay. You can learn more about the
implementation of these features in the Synchronization in
nDisplay topic in the Unreal Engine documentation.

Determinism

There are two types of approaches for
managing synchronization:

• Deterministic: Each server (PC, rendering node) is set
up in such a way that the output is always predictable
given a particular set of inputs, which means the only
information the server needs to synchronize with other
machines in the system is an accurate time, and input/
output information for each individual machine.

• Non-deterministic: To ensure synchronization, the
system forces replication of the transform matrices and
other relevant characteristics of all actors or objects in a
scene and reproduces them throughout the system.

Each approach has pros and cons. The main advantage of
a deterministic system is project simplicity, and the data

Figure 6: Curved LED display from flat screens
(left) and single curved panel (right)

Figure 7: 3D display built from multiple flat LED panels

Figure 5: Example of curved LED screen setup. [Image courtesy of Moment Factory]

FRONT VIEW

SIDE VIEW

FRONT VIEW TOP VIEW

5˚ 25˚

8

https://www.planar.com/blog/2018/2/23/what-is-pixel-pitch-and-why-does-it-matter/
https://www.planar.com/blog/2018/2/23/what-is-pixel-pitch-and-why-does-it-matter/
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/Synchronization/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/Synchronization/index.html

bandwidth saved by not sharing transform data for each
object at every frame. The downside is that if one system
diverges, the divergence will have unknown issues over
time. Rendering uniformity could be severely compromised,
leading to visual discontinuity and artifacts.

Hardware sync and genlock

While the nDisplay primary PC ensures that all cluster
node PCs in the cluster are informed of timing information
from a gameplay perspective (for example, which frame to
render), specialized hardware sync cards and compatible
professional graphics cards are necessary to synchronize
the display of those rendered frames at exactly the same
time on the physical display devices.

In broadcast applications, for example, it is common to
synchronize many devices such as cameras, monitors,
and other displays so they all switch and capture the next
frame at precisely the same time. In this industry, the use
of genlock is widely used and adopted.

Typically, the setup is composed of a hardware
generator that sends the clock to the hardware requiring
synchronization. In the case of PCs used for real-time
rendering, professional graphics cards such as those in the
NVIDIA Quadro line support this technology alongside the
NVIDIA Quadro Sync II card, which will lock to the received
timing signal or pulse.

Figure 8: Screenshot of NVIDIA Control Panel - View System Topology for genlock

9

nDisplay: Limitless scaling of real-time content

https://en.wikipedia.org/wiki/Genlock

Daisy chain versus direct genlock

Daisy chaining is a signal-locking technique that is used
alongside direct genlock, where the master clock is sent to
a single PC or device—in our case, the Primary PC. Separate
cables then propagate the signal to all other PCs.

Previous experience with nDisplay suggests that direct
genlock, where each PC receives the clock directly from the
master source, is simpler and more effective than daisy
chaining. However, a new hardware approach based on
daisy-chaining, NVIDIA Swap Sync/Lock, was released
as part of Unreal Engine 4.25 to provide an alternative
solution to signal locking that may be more reliable and
cost-effective.

Synchronization testing

Testing synchronization for a scaled display can be tricky
because desynchronization can result from any number of
issues, including:

• Wrong frame is simulated due to incorrect timestamp
• Display device timing is off

To test sync, we use a simple test project displaying a
single object moving quickly across the entire display
surface. When systems are properly in sync, the object
retains its form as it passes across boundaries. Otherwise,
the display will show artifacts at shared edges.

Post effects

Post-production effects such as bloom, lens flare, and
motion blur are computed in screen space, meaning they
can be applied only after the entire frame is rendered. This
is due to the fact that such effects are usually not isolated
to one section of the image; they need information about
the pixels in neighboring sections to render properly.

For example, the effect of a single bloom often spreads
widely throughout an image. In a distributed rendering
system using the deterministic approach, a bloom that
originates from a spot in one portion of the image will not
“reach” neighboring sections, and the blend between the
bloom area and non-bloom area will not be smooth.

For scaled displays, such effects should be disabled in
order to prevent visual artifacts in blend areas. It is possible
to have these types of effects, but they must be managed
very carefully at display boundaries, usually using costly
and advanced techniques.

Existing technology

As part of the development strategy for new features,
Epic Games is constantly evaluating existing tools that
could add functionality to Unreal Engine (UE4). After much
research, we found the following technologies to help us
achieve our goals for scaled displays.

MPCDI

The MPCDI (Multiple Projection Common Data Interchange)
standard was developed by VESA’s Multi-Projector
Automatic Calibration (MPAC) Task Group. This is a
standard data format for projection calibration systems to
communicate with devices in a multi-display configuration.
The standard provides a way for multi-projector systems
to generate the data needed to combine individual display
components into a single, seamless image by a variety of
devices. Any new hardware introduced into a system can be
easily integrated with the standard.Figure 9: Synchronization testing on a simple scene. Setup

at left has correct synchronization, setup at right does not.

SCREEN A SCREEN ASCREEN B SCREEN B

10

nDisplay: Limitless scaling of real-time content

https://vesa.org/featured-articles/vesa-completes-specifications-for-new-multiple-projector-common-data-interchange-standard-mpcdi/

MPCDI is used throughout the industry by content
producers and vendors such as:

• Scalable Display Technologies
• VIOSO
• Dataton Watchout
• 7thSense Design

Scalable Display EasyBlend

Scalable Display Technologies is a company that focuses on
software and SDKs for complex projection systems. Their
SDK is designed to provide a solution for large displays of a
single image through warping and blending. Since Scalable
Display Technologies already had the EasyBlend solution
in place to handle warping and blending of large images,
we chose to integrate it with Unreal Engine to achieve
our goals.

System specification

After considering the most likely or common needs for
scaled real-time content, and also reviewing available
technology, we identified the following as requirements for
a system to work with Unreal Engine. The system needed to
be able to:

• Deploy and launch multiple instances of Unreal Engine
across an array of computers in a network

• Ensure perfectly synchronized content restitution on all
computers involved

• Enable active/passive stereoscopic vision
• Manage and distribute various sources of inputs such as

VR tracking systems
• Accept various configurations of displays in terms of

size, spatial orientation, and resolution

Image courtesy of Scalable Display Technologies

11

nDisplay: Limitless scaling of real-time content

https://www.scalabledisplay.com/products/scalable-display-manager/
https://vioso.com/software/vioso-integrate/
https://www.dataton.com/products/watchout
https://7thsensedesign.com/portfolio-item/infinity-2/
https://www.scalabledisplay.com/

nDisplay solution
To meet these requirements, Epic Games developed the
nDisplay system. nDisplay distributes the rendering of
Unreal Engine content across a network of computers
to generate images to as many displays as required
with proper frame/time synchronization, correct viewing
frustum based on the topology of the screens in world
space, and deterministic content that is identical across
the visualization system.

In its essence, nDisplay technology extends Unreal
Engine by distributing the rendering of a camera
view over an arbitrary number of machines and then
displaying the rendered images on an arbitrary number of
display mechanisms.

After much consideration, we decided that the best way
to implement nDisplay with Unreal Engine was to have
the cluster node automatically attach itself to the active
camera location in the Unreal Engine project. The view from
the Unreal Engine camera is what is extended, rendered,
and distributed based on the nDisplay settings.

nDisplay does the following:

• Synchronizes actors across Unreal Engine Instances
(cameras, animations, particles, etc.)

• Acts as a listener for keys, axis, and positioning
• Acts as VRPN server for tracking devices such as ART

and Vicon
• Supports DirectX 11 and DirectX 12 graphics libraries in

both mono and stereoscopic modes (frame sequential-
quad buffer, side by side, top / bottom)

• Supports NVIDIA Quadro Sync synchronization for frame
consistency, flexibility, and scalability

• Provides asymmetric frustums configuration for
stereoscopic systems

Structure

The nDisplay toolset consists of a plugin and a set of
configuration files and applications for Unreal Engine. It
includes the following components:

• nDisplay plugin - Used during runtime to provide the
network interface between instances, optional actor
replication, and input management system; configures
rendering subsystem to display node topology

• nDisplay configuration file - Describes the topology of
the display system and overall centralized location for
project settings

• nDisplayLauncher and nDisplayListener - Applications
for launching and controlling “n” instances of Unreal
Engine across different computers on a network, each
connected to one or many displays

Integration with Unreal Engine features

Deterministic and non-deterministic features

Earlier in this paper, we discussed the pros and cons of a
deterministic system, where synchronization is simplified
by each node not sharing all frame information with
other nodes.

In the case of Unreal Engine, we lean towards fully
deterministic systems in terms of gameplay, physics,
and rendering features. However, some subfeatures are
currently not fully deterministic. The chart below shows
where we stand in terms of deterministic features within
Unreal Engine.

12

nDisplay: Limitless scaling of real-time content

https://en.wikipedia.org/wiki/Viewing_frustum

Feature Deterministic? Notes

Simple physics To a limited
extent

Collision volumes,
capsules, planes, boxes,
and spheres exhibit
incoherent behavior
using all physics solvers.
Replication is required
for accuracy.

Complex physics

• Rigid bodies
• Soft bodies
• Cloth
• Vehicles

and joints
• Skeletons

To a limited
extent

Random noise
introduced deep in the
current PhysX solver
prevents the system
from maintaining
synchronization over
time. Replication is
required for accuracy.

Niagara particles Yes We have not yet
experienced time
divergence using this
system.

Sequencer Yes Yes, deterministic in
nature, functions as
expected.

Blueprint
gameplay logic

Yes Most Blueprint logic will
function as expected
unless the Blueprint
contains functionality
known to not be
deterministic, such as
using non-deterministic
devices or using not-yet-
deterministic functions.

Blueprint
randomized logic

No By nature, randomization
features across
Unreal Engine prevent
logic from being fully
deterministic. Note that
some particle systems
configured in Blueprint
are randomized and
should be used and
reviewed with care.

Our future plans include rewriting the Unreal physics engine
to fully support deterministic behavior. In the meantime,
we do support replication capabilities that enforce visual
coherence when needed, at the cost of extra bandwidth and
some project customization.

Asymmetric frustums

In the traditional use of a camera, the camera is centered in
front of the view, providing a symmetric frustum.

A distributed system requires the definition of camera
locations and custom view frustums which are assigned
to various PCs for rendering. Because one UE4 camera
supplies the view for multiple screens or projections, the
camera frustum must understandably be split into more
than one frustum, with each frustum providing the imagery
for a specific projector or portion of an LED screen. These
frustums are, by nature, asymmetric.

Note that the perspective in the rendered image does
not change when the frustum is split. The splitting of
the frustum is simply to facilitate distributed rendering
of the camera view, which is often off-center with
nDisplay systems.

Figure 10: Symmetric view frustum (left) and
asymmetric view frustums (right)

Table 1: Determinism of Unreal Engine features

SCENE VIEW

CAMERA

FRUSTRUM FRUSTRUM
1

FRUSTRUM
2

FRUSTRUM
3

SCENE VIEW

13

nDisplay: Limitless scaling of real-time content

Post-process VFX

Because of the potential issues with continuity across
screen junctions or overlap/blend areas for projectors,
the suggested workflow is to disable screen-space post
processes that have been identified as potential causes
of rendering artifacts. However, if a project really needs
these effects, one possible solution is to render extra pixels
beyond the actual viewing frustum. This approach, called
overscan, allows some of these effects to be applied at the
cost of extra render time. You can develop this approach by
extending nDisplay.

The following is a list of post-process VFX that should be
disabled or used with caution, as they pose a risk of tearing
or other continuity issues:

• Bloom
• Lens flare
• Automatic eye adaptation
• Motion blur
• Ambient occlusion
• Anti-aliasing (although very subtle, some techniques

might show a difference)
• Screen-space reflections
• Vignetting
• Chromatic aberration

When deciding whether to include screen-space effects in a
distributed display, you will need to balance the importance
of the effect to the user experience with the extra care
involved in making the effect work (and the possibility that
the effect won’t work properly and will end up detracting
from the experience rather than enhancing it). The many
facets involved in making such a decision for any particular
project are beyond the scope of this paper.

MPCDI

Support for the MPCDI standard enables nDisplay to read
and store data describing a complex projector system in a
standardized and formalized fashion, so that we can easily
communicate and interface with various other tools from
within the industry.

Because the MPCDI implementation is new, its usability
and UX are still somewhat lacking. To get around these
limitations, we are working on a solution for previewing the
MPCDI file data within the Unreal Editor and at runtime.

Currently, users are able to generate procedural meshes of
physical displays based on mesh data generated from the
MPCDI file.

Figure 11: Example of MPCDI setup in Blueprint

14

nDisplay: Limitless scaling of real-time content

At the time of the writing, no commercial tools are
available for implementing MPCDI, so the generation
and manipulation of MPCDI configuration files are the
responsibility of the underlying software companies. In the
future, we may introduce a display or editing tool for the
MPCDI configuration file as part of nDisplay, but this is not
part of our current implementation.

Scalable Display - EasyBlend integration

nDisplay supports warp and blend through the integration
of industry-standard middleware Scalable SDK and
EasyBlend for all supported modes, native warp and blend
with MPCDI, and custom implementations.

We implemented the integration of EasyBlend to provide a
seamless experience in configuring a complex projective
system. Once calibration is completed using the third-
party tool or software, the user only needs to specify a
few parameters in the nDisplay configuration file to get
it running.

Limitations

The following manual steps are required to set up and
use nDisplay:

• Configuration: Manually set up your configuration file
by defining your display topology, projection policy,
viewports, render node PCs, tracking devices, and any
other components of the system.

• Project adaptation: With recent updates to nDisplay,
only slight adaptations to your project are required to
ensure it isn’t using incompatible or non-deterministic
features. Essentially, everything that is linear, animated,
and does not rely on complex physics, randomized

functions, or screen-space VFX will work as is. More
complex projects might require replication of some
actors in order to be properly synced.

• Deployment: Configure and copy your project files and
assets to the destination render PCs, either manually or
by using custom tools. Then use our provided third-party
tools to launch your nDisplay project remotely.

Here are some known physical limitations in nDisplay, at the
time of writing:

• nDisplay currently runs on Windows 7 and higher (DirectX
11 and DirectX 12).

• Quad buffer (active) stereo feature is supported only on
Windows 8.1 and higher.

• OpenGL support is deprecated.
• nDisplay does not currently have Linux support.
• Support for framelock and genlock is available only

for professional-grade graphics cards such as
NVIDIA Quadro.

• Auto exposure, bloom, planar reflections, and some
shader effects are not supported by nDisplay. You can
still use them, but you will likely see visual artifacts or
discontinuities in your displayed content.

• 2D UMG Interface features (Hover, Click, and Viewport
Alignment) are not supported. Alternative methods
through OSC, REST, or other available remote control
protocols can be used to control an nDisplay system.

Note that nDisplay scales the GPU side of rendering, which
is the main bottleneck for real-time content, but it doesn’t
scale CPU-based operations like gameplay and physics. All
cluster PCs will still have to process all these CPU-based
operations individually. In other words, because nDisplay is
strictly a rendering distribution system, it won’t provide any
acceleration from a CPU standpoint.

nDisplay: Limitless scaling of real-time content

15

https://www.scalabledisplay.com/products/scalable-sdk/
https://vesa.org/featured-articles/vesa-updates-multiple-projection-common-data-interchange-mpcdi-standard-to-include-new-color-correction-parameters/

Deployment

At the time of writing, nDisplay does not offer any automated content or project deployment tools. This is because most
users often have very large and complex projects and specific network constraints such as firewall policies, and often
prefer their own ways of managing and deploying/copying content.

In the future, however, we expect to include a minimal set of quick deployment features that you can use to test nDisplay,
further reducing the manual steps required to scale the rendering of Unreal Engine-based content.

In the meantime, internal teams have come up with tools like the one shown in Figure 12 from which we will gain inspiration
to drive future versions of the current Deployment Tool.

Figure 12: Example of custom deployment tool

16

nDisplay: Limitless scaling of real-time content

nDisplay workflow
The following diagrams show how nDisplay works with a network and display devices.

The nDisplay plugin can be enabled for an existing project, or can be enabled automatically by creating a project with the
nDisplay template. See the nDisplay Quick Start documentation for details.

Figure 13: Network setup for projective display Figure 14: Network setup for LED display

Figure 15: Network setup for projective system with tracked camera

LED
LED LED

GENLOCK SIGNAL GENERATOR

GENLOCK SIGNAL GENERATOR

PRIMARY PC

PRIMARY PC

TRACKED CAMERA

CLUSTER
(NODE) PC

CLUSTER
(NODE) PC

NETWORK SWITCH

PROJECTORS

SCREEN

INPUTS
INPUTS

GENLOCK SIGNAL
GENERATOR

LED PROCESSORS

TRACKER

TRACKING EMITTERS

PRIMARY PC

PROCESSORS

CLUSTER (NODE) PC

NETWORK SWITCH

NETWORK SWITCH
LED SCREENS

INPUTS

CLUSTER (NODE) PC

CLUSTER (NODE) PC

17

nDisplay: Limitless scaling of real-time content

https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/QuickStart/index.html

Primary PC

The main computer acting as nDisplay conductor.
Centralized location for:

• Managing and dispatching inputs as well as camera
tracking data and custom cluster events to the other
cluster (node) PCs in the nDisplay cluster network in a
synchronous manner

• Ensuring all PCs receive and acknowledge the same
inputs and data at the same time

• Managing timing information across cluster of PCs
• Managing and distributing optional actor and data

replication to the other PCs

Cluster (node) PCs

• Effectively execute identical gameplay and physics
simulation to the Primary PC

• Render extra camera frustums in synchronous manner
with the Primary PC

• Frame-locked and genlocked with all cluster PCs

Configuration file

The configuration file is at the root of nDisplay functionality.
In essence, it describes your hardware setup in terms of
PCs and display mechanisms as well as the relationship
between them. While the setup of the nDisplay configuration
file is described in detail in our nDisplay Configuration File
Reference documentation, in this section we’ll go over a few
concepts and terms specific to nDisplay.

Windows, viewports, and screens

To configure an nDisplay setup, it’s important to understand
a few key terms with very specific meanings in the context
of nDisplay.

Window - The portion of the entire frame that will be
rendered/displayed by a single node in the cluster (usually a
single PC).

Viewport - A rectangular portion of a window. For example,
the image in a window might be made up of four viewports,
each of which is rendered separately and then assembled
in the window. The nDisplay configuration specifies how
many viewports make up any one window, and gives the
viewports’ positions within the window. Note that it is
perfectly valid to set up just one viewport for a window.

Screen - The physical positioning, size, and orientation of
the displays in the real world. With projection, the screen is
a rectangle which determines the camera frustum.

Camera - An offset to the camera inside the Unreal Engine
scene. This offset can be useful for adjusting the imagery
by a small amount to improve the viewer’s experience.

Figure 16: Relationship between window, viewports, instance, camera,
and cluster node in nDisplay setup with a single cluster node.

UE4 SCENE

CLUSTER

CLUSTER NODE

UE4 CAMERAUE4 INSTANCE

VIEWPORT 1 VIEWPORT 2

WINDOW

VIEWPORT 3 VIEWPORT 4

18

nDisplay: Limitless scaling of real-time content

https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/Configuration/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/Configuration/index.html

The following rules help to illustrate the relationships
between these elements:

• A cluster has one or more cluster nodes.
• A cluster node corresponds to a single UE4 camera, but a

single UE4 camera may have many cluster nodes hooked
to it.

• A cluster node has only one window, which is some
portion or all of the UE4 camera view.

• A window has one or more viewports.
• Each viewport has one projection policy and shows a

portion of the view (or the entire view) from one of the
available cameras in the nDisplay configuration file. The
same projection policy can be used by multiple viewports.

• Viewports cannot overlap.
• A camera can be re-used by different viewports.

Clusters and cluster nodes

Cluster nodes are used to describe the nDisplay PC network
configurations, designate which machine will be the primary
server, and specify which windows are assigned to each
PC. The cluster is built and hooked to the active camera in

the Unreal Engine scene, where the camera view is what is
being rendered and distributed.

nDisplay essentially adds additional viewpoints to your
current Unreal Engine camera. Think of additional eyes or,
more precisely, virtual viewports looking at your scene in
arbitrary locations, but attached to the master camera
path. If you move the camera in your Unreal Engine scene
forward by five units, then the whole nDisplay cluster moves
in the same direction by five units.

A cluster node is associated with a single UE4 application
instance. Usually each application instance runs on its
own machine, but you may use multiple instances on the
same PC with a separate cluster node associated with
each instance.

The cluster nodes make up the cluster. The most common
setup, for a single contiguous display of a single UE4
camera view, needs only one cluster. A less common setup
consists of two or more screens which show different
UE4 scenes (or different camera angles within a common
scene). In such a case, you would need to set up a separate
cluster for each UE4 scene.

Projection policy

A projection policy is an abstraction that specifies where
to send a projection’s input data and how to compute the
output. This means that each policy might have its own
properties that it knows how to interpret and utilize.

nDisplay supports several policies. The following are the
most commonly used:

• Simple - Standard policy used to render on
regular displays.

• EasyBlend - Integration of EasyBlend calibration data by
Scalable SDK, enabling warp/blend/keystoning features.
Required to display on non-planar and complex display
surfaces such as curved or dome-shaped surfaces
using multi-projectors.

• MPCDI - Integration of the MPCDI standard, used for
complex projects relying on this industry protocol.

Figure 17: Relationship between windows, viewports, instances, camera,
and cluster nodes in nDisplay setup with more than one cluster node.

1 2CLUSTER NODE 1

CAMERAS IN SAME
POSITION/ORIENTATION

IN BOTH INSTANCES

CLUSTER

CLUSTER NODE 2

UE4 CAMERAUE4 CAMERA

UE4 INSTANCE 2

VIEWPORT 3VIEWPORT 1

VIEWPORT 4VIEWPORT 2

UE4 INSTANCE 1

WINDOW FOR CLUSTER NODE 1 WINDOW FOR CLUSTER NODE 2

UE4 SCENE

19

nDisplay: Limitless scaling of real-time content

Config file examples

Complete EasyBlend policy config file example

[info] version=“23”

[cluster_node] id=“node_left” addr=“10.1.100.2” window=“wnd_left” master=“true”
[cluster_node] id=“node_right” addr=“10.1.100.3” window=“wnd_right”

[window] id=“wnd_left” fullscreen=“true” viewports=“vp_1,vp_2”
[window] id=“wnd_right” fullscreen=“true” viewports=“vp_3,vp_4”

[projection] id=proj_easyblend_1 type=“easyblend” file=“C:\Program Files\Scalable Display\DEI\LocalCalibration\ScalableData.pol” origin=easyblend_origin scale=1
[projection] id=proj_easyblend_2 type=“easyblend” file=“C:\Program Files\Scalable Display\DEI\LocalCalibration\ScalableData.pol_1” origin=easyblend_origin scale=1
[projection] id=proj_easyblend_3 type=“easyblend” file=“C:\Program Files\Scalable Display\DEI\LocalCalibration\ScalableData.pol” origin=easyblend_origin scale=1
[projection] id=proj_easyblend_4 type=“easyblend” file=“C:\Program Files\Scalable Display\DEI\LocalCalibration\ScalableData.pol_1” origin=easyblend_origin scale=1

[viewport] id=vp_1 x=0 y=0 width=2560 height=1600 projection=proj_easyblend_3
[viewport] id=vp_2 x=2560 y=0 width=2560 height=1600 projection=proj_easyblend_4
[viewport] id=vp_3 x=0 y=0 width=2560 height=1600 projection=proj_easyblend_1
[viewport] id=vp_4 x=2560 y=0 width=2560 height=1600 projection=proj_easyblend_2

[camera] id=camera_static loc=“X=0,Y=0,Z=0.0”

[scene_node] id=cave_origin loc=“X=0,Y=0,Z=0” rot=“P=0,Y=0,R=0”
[scene_node] id=wand loc=“X=0,Y=0,Z=1”
[scene_node] id=easyblend_origin loc=“X=0,Y=0,Z=0” rot=“P=0,Y=0,R=0”

[general] swap_sync_policy=1 ue4_input_sync_policy=1
[network] cln_conn_tries_amount=10 cln_conn_retry_delay=1000 game_start_timeout=30000 barrier_wait_timeout=5000
[custom] SampleArg1=SampleVal1 SampleArg2=SampleVal2

Complete simple policy dual monitor config file example

[info] version=“23”

[cluster_node] id=“node_left” addr=“127.0.0.1” window=“wnd_left” master=“true”
[cluster_node] id=“node_right” addr=“127.0.0.1” window=“wnd_right”

[window] id=“wnd_left” fullscreen=“true” viewports=“vp_left” WinX=“0” WinY=“0” ResX=“2560” ResY=“1440”
[window] id=“wnd_right” fullscreen=“true” viewports=“vp_right” WinX=“2560” WinY=“0” ResX=“2560” ResY=“1440”

[projection] id=“proj_left” type=“simple” screen=“scr_left”
[projection] id=“proj_right” type=“simple” screen=“scr_right”

[screen] id=“scr_left” loc=“X=1.5,Y=-.8889,Z=0” rot=“P=0,Y=0,R=0” size=“X=1.7778,Y=1.0”
[screen] id=“scr_right” loc=“X=1.5,Y=.8889,Z=0” rot=“P=0,Y=0,R=0” size=“X=1.7778,Y=1.0”

[viewport] id=“vp_left” x=“0” y=“0” width=“2560” height=“1440” projection=“proj_left” camera=“camera_left”
[viewport] id=“vp_right” x=“0” y=“0” width=“2560” height=“1440” projection=“proj_right” camera=“camera_right”

[camera] id=camera_left loc=“X=0,Y=0,Z=0.0”
[camera] id=camera_right loc=“X=0,Y=0,Z=0.0”

[scene_node] id=cave_origin loc=“X=0,Y=0,Z=0” rot=“P=0,Y=0,R=0”
[scene_node] id=wand loc=“X=0,Y=0,Z=1”
[scene_node] id=proj_origin loc=“X=0,Y=0,Z=0” rot=“P=0,Y=0,R=0”

[general] swap_sync_policy=1 ue4_input_sync_policy=1
[network] cln_conn_tries_amount=30000 cln_conn_retry_delay=500 game_start_timeout=30000000 barrier_wait_timeout=50000000
[custom] SampleArg1=SampleVal1 SampleArg2=SampleVal2

20

nDisplay: Limitless scaling of real-time content

nDisplayLauncher and nDisplayListener
These applications are shipped with the nDisplay plugin in
order to facilitate the deployment of a project across an
array of PCs.

Listener

The nDisplayListener is a minimalist application that
resides on the host PCs (primary and all cluster node PCs)
and can receive various remote commands, for example to
launch an existing project using a path and argument list, or
to terminate an existing project.

Launcher

The Launcher simultaneously launches multiple projects
on a list of available PCs that are running the Listener in
the background. The Launcher can be run from any PC or
laptop on the local network.

To run the Launcher, specify the following:

• Application path
• Configuration file describing the cluster network, display

topology, and other required settings
• Optional settings such as stereoscopic settings, project

variables, or command line arguments

Figure 18: Screenshot of nDisplayListener software

Figure 19: Screenshot of nDisplay Launcher software

21

nDisplay: Limitless scaling of real-time content

Unreal Engine project-based
considerations

Assuming the display cluster has already been properly set
up, enabling nDisplay in a project is fairly straightforward.
In many cases, you will not need to change anything
about the UE4 scene and can use it as is. Other cases
will require minor modifications to your setup.

There are two main use cases of nDisplay that can be
described as follows:

• Static systems - The term static, in this sense,
describes a setup where the nDisplay camera system
does not react to outside influences like viewer
interaction in relation to the display. (Note that in this
case, the UE4 camera may be either still or animated.)
In this common use case, where there is no specific
tracking needed, you will very often be able to run
the project without modification using the specified
configuration file. nDisplay will automatically spawn
a DisplayClusterRootActor in the UE4 scene that will
follow the active UE4 camera with no offset or changes
required whatsoever.

• Head-tracked systems - For systems with head
tracking (e.g. ART, Vicon), use the VRPN server tracking
system specified in the configuration file. This is how
most CAVEs are implemented. In this use case, the real-
time adjustments in terms of position and orientation
will be provided automatically to make the display image
logically correspond to the viewer’s point of view.

In any case, you should avoid manually modifying the UE4
camera to make it correspond to the viewer’s physical point
of view in relation to the display. Typical projects have many
cameras (e.g. for gameplay, animation, and cinematics), and
it would be difficult to manually adjust each and every one
of them correctly.

If you need to adjust the UE4 camera view, the suggested
workflow is to add the DisplayClusterRootActor somewhere
in your project with local offsets and rotations applied to the
DisplayClusterRootComponent. Adjustments done here will
only apply to the nDisplay camera system without intrusive
changes to the main UE4 project camera logic.

Another quick and non-intrusive option is to simply apply
those changes in terms of offset and rotation to the
[camera] line within the nDisplay configuration file.

22

nDisplay: Limitless scaling of real-time content

https://en.wikipedia.org/wiki/VRPN

Next steps / future vision
Epic Games is committed to nDisplay technology and is excited by its endless possibilities. The volume of feedback we’ve
received from the industry, and also from our internal team, has contributed greatly to our perspective and insight on
where we see this technology evolving over time.

With the ongoing developments around nDisplay, new opportunities are now within reach such as projection mapping and
display canvases of any size, shape and resolution. For the near future, we are looking to prioritize user experience and
the remaining determinism aspects for the next release of nDisplay. Our long-term goal is to provide a framework where
any Unreal Engine project can distribute its rendering regardless of features used in the project, including physics and
gameplay logic. In other words, we aim to provide a deterministic system that works with all Unreal Engine features.

In current and upcoming releases, the plan is to make it so that any Unreal Engine project can be run and displayed with
minimum changes or disruption. Although there is complexity involved under the hood, the idea should remain the same
for the end user:

“Enable nDisplay, define my screen topology, and then
distribute my real-time rendering.”
There will always be tweaks and edge cases, but globally speaking, we want our users to focus on the creative and
programming aspects of their applications while nDisplay takes care of distributing and displaying the rendering.

23

Unreal Engine 4: Realistic, high-quality windows

About this document
Author

Sevan Dalkian

Contributors

Sébastien Miglio

Sébastien Lozé

Simon Tourangeau

Vitalii Boiko

Andrey Yamashev

Editor

Michele Bousquet

Layout

Jung Kwak

Copyright © 2019 Epic Games, Inc. All rights reserved.

24

nDisplay: Limitless scaling of real-time content

