
BRINGING UNREAL ENGINE 4 TO OPENGL 
Nick Penwarden – Epic Games 

Mathias Schott, Evan Hart – NVIDIA   | March 20, 2014 



About Us 

Nick Penwarden 

Lead Graphics Programmer – Epic Games 

Twitter: @nickpwd 

Mathias Schott 

Developer Technology Engineer – NVIDIA 

Evan Hart 

Principal Engineer - NVIDIA 



Unreal Engine 4 

Latest version of the highly successful UnrealEngine 

Long, storied history 

Dozens of Licensees 

Hundreds of titles 

Built to scale 

Mobile phones and tablets 

Laptop computers 

Next-gen Console 

High-end PC 



Why OpenGL? 

The only choice on some platforms: 

Mac OS X 

iOS 

Android 

Linux 

HTML5/WebGL 

Access to new hardware features not tied to OS version. 

Microsoft has been tying new versions of Direct3D to new versions of 

Windows. 

OpenGL frees us of these restrictions: D3D 11.x features on Windows XP! 



Porting UE4 to OpenGL 

UE4 is a cross platform game engine. 

We run on many platforms today (8 by my count!) with more to 

come. 

Extremely important that we can develop features once and have 

them work across all platforms! 



(Very) High Level Look at UE4 

Game Engine 

World 

   PrimitiveComponents 

… 

   LightComponents 

… 

   Etc. 

Renderer 

Scene 

   PrimitiveSceneInfo 

… 

   LightSceneInfo 

… 

   Etc. 

RHI 

Shaders 

Textures 

Vertex Buffers 

Etc. 

CROSS PLATFORM 
PLATFORM 

DEPENDENT 



Render Hardware Interface 

Largely based on the D3D11 API 

Resource management 

Shaders, textures, vertex buffers, etc. 

Commands 

DrawIndexedPrimitive, Clear, SetTexture, etc. 



OpenGL RHI 

Much of the API maps in a very straight-forward manner. 

RHICreateVertexBuffer -> glGenBuffers + glBufferData 

RHIDrawIndexedPrimitive -> glDrawRangeElements 

What about versions? 4.x vs 3.x vs ES2 vs ES3 

What about extensions? 

A lot of code can be shared between versions, even ES2 and GL4. 



OpenGL RHI  

Use a class hierarchy with static functions. 

Each platform ultimately defines its own, typedefs it as FOpenGL. 

Optional functions defined here, e.g. FOpenGL::TexStorage2D() 
Depending on platform could be unimplemented, glTexStorage2DEXT, 
glTexStorage2D, … 

Optional features have a corresponding SupportsXXX() function. 
E.g. FOpenGL::SupportsTexStorage(). 

If support depends on an extension, we parse the GL_EXTENSIONS string at boot 
time and return that. 

If support is always (or never) available for the platform we return a static true 
or false. This allows the compiler to remove unneeded branches and dead code. 

Allows us to share basically all of our OpenGL code across ES2, GL3, and 
GL4! 

 



What about shaders? 

That other stuff was easy. 

Well, not exactly, Evan and Mathias will explain why later. 

We do not want to write our shaders twice! 

We have a large, existing HLSL shader code base. 

Most of our platforms support an HLSL-like shader language. 

We want to be able to compile and validate our shader code offline. 

Need reflection to create metadata used by the renderer at runtime. 

Which textures are bound to which indices? 

Which uniforms are used and thus need to be computed by the CPU? 

 



What are our options? 

Can we just compile our HLSL shaders as GLSL with some magical 

macros? 

No. Maybe for really simple shaders but the languages really are different in 

subtle ways that will cause your shaders to break in OpenGL. 

So use FXC to compile the HLSL and translate the bytecode! 

Can work really well! 

But not for UE4: we support Mac OS X as a full development platform. 

Any good cross compilers out there? 

None that support shader model 5 syntax, compute, etc. 

At least none that we could find two years ago :) 

 



HLSLCC 

Developed our own internal HLSL cross compiler. 

Inspired by glsl-optimizer: https://github.com/aras-p/glsl-optimizer 

Started with the Mesa GLSL parser and IR: http://www.mesa3d.org/ 

Modified the parser to parse shader model 5 HLSL instead of GLSL. 

Wrote a Mesa IR to GLSL converter, similar to that used in glsl-

optimizer. 

Mesa includes IR optimization: this is an optimizing compiler! 

 

https://github.com/aras-p/glsl-optimizer
https://github.com/aras-p/glsl-optimizer
https://github.com/aras-p/glsl-optimizer
https://github.com/aras-p/glsl-optimizer
https://github.com/aras-p/glsl-optimizer
http://www.mesa3d.org/


Benefits of Cross Compilation 

Write shaders once, they work everywhere. 

Contain platform specific workarounds to the compiler itself. 

Offline validation and reflection of shaders for OpenGL. 

Treat generated GLSL that doesn’t work with a GL driver as a bug in the cross 

compiler. 

Simplifies the runtime, especially resource binding and uniforms. 

Makes mobile preview on PC easy! 



GLSL Shader Pipeline 

Shader Compiler Input 

HLSL 

Source 
HLSL 

Source 
HLSL 

Source 
HLSL 

Source 

#defines 

Compiler Flags 

MCPP* 

Shader Compiler Output 

GLSL 

Source 
Parameter Map 

 

 

Parse HLSL -> Abstract Syntax Tree 

Convert AST -> Mesa IR 

Convert IR for HLSL entry point to GLSL 

compatible main() 

Optimize IR 

Pack uniforms 

Optimize IR 

Convert IR -> GLSL + parameter map 

HLSLCC 

* http://mcpp.sourceforge.net/ 



Resource Binding 

When the OpenGL RHI creates the GLSL programs, setting up bind 

points is easy: 

 

 

 

 

Renderer binds textures to indices. 

RHISetShaderTexture(PixelShader,LightmapParameter,LightmapTexture); 

Same as every other platform. 

 

for (int32 i=0; i < NumSamplers; ++i) 
{ 
    Location = glGetUniformLocation(Program, “_psi”); 
    glUniform1i(Location,i); 
} 

(from parameter map) 



Uniform Packing 

All global uniforms are packed in to arrays. 

Simplifies binding uniforms when creating programs: 
We don’t need the strings of the uniform’s names, they are fixed! 

glGetUniformLocation(“_pu0”) 

Simplifies shadowing of uniforms when rendering: 
RHISetShaderParameter(Shader,Parameter,Value) 

Copy value to shadow buffer, just like the D3D11 global constant buffer. 

Simplifies setting of uniforms in the RHI: 
Track dirty ranges. For each dirty range: glUniform4fv(…) 

Easy to trade off between the quantity of glUniform calls and the amount of 
bytes uploaded per draw call. 

 



Uniform Buffer Emulation (ES2) 

Straight-forward extension of uniform packing. 

Rendering code gets to treat ES2 like D3D11: it packages uniforms in 

to buffers based on the frequency at which uniforms change. 

The cross compiler packs used uniforms in to the uniform arrays. 

Also provides a copy list: where to get uniforms from and where they 

go in the uniform array. 

 



UV Space Differences 

-1,-1 

+1,+1 

0,0 

1,1 

0,0 

1,1 

Normalized Device Coordinates 

Direct3D UV Space 

OpenGL UV Space 



From the Shader’s Point of View 

-1,-1 

+1,+1 

0,0 

1,1 

0,0 

1,1 
Normalized Device Coordinates 

Direct3D UV Space 

OpenGL UV Space 



Rendering Upside Down 

Solutions? 

Could sample with (U, 1 - V) 

Could render and flip in NDC (X,-Y,Z) 

We choose to render upside down. 

Fewer choke points: lots of texture samples in shader code! 

You have to transform your post-projection vertex positions anyway. D3D 

expects Z in [0,1], OpenGL expects Z in [-1,1]. 

Can wrap all of this in to a single patched projection matrix for no runtime 

cost. 

You also have to reverse your polygon winding when setting rasterizer state! 

BUT: Remember not to flip when rendering to the backbuffer! 

 



After Patching the Projection Matrix 

-1,-1 

+1,+1 

0,0 

1,1 

0,0 

1,1 
Normalized Device Coordinates 

Direct3D UV Space 

OpenGL UV Space 



Next… 

Evan and Mathias will talk about extending the GL RHI to a full 

D3D11 feature set. 

Also, how to take all of this stuff and make it fast! 



Achieving DX11 Parity 

Enable advanced effects 

Not a generic DX11 layer 

Only handle engine needs 

60% shader / 40% engine 

Evolves over time  

with engine  

OpenGL API 



From OpenGL 3.x to 4.x 

Compute 

shaders 

 

General  

Shader  

upgrades 

Unordered  

Access 

Views 

Tessellation 

Lots of extensions 

And API 

enchancements 

 

but 

 

Maintain Core API 

Compatibility 

ES2, GL3, GL4 etc 



General Shader Upgrades 

Too many to discuss 

Most straight forward 

Some ripple in HLSLCC 

Type system 

IR 

Optimization  

Shared Memory 

RWTexture* 

RWBuffer* 

Memory Barriers 

Shared Memory Atomics 

UAV Atomic 

Conversion and packing functions 

Texture arrays 

Integer Functions 

Texture Queries 

New Texture Functions 

Early Depth Test 



Compute Shader API 

Simple analogs for Dispatch 

Need to manage resources 

No separate binding points 

i.e. no CSetXXX 

Memory behavior is different 

DirectX 11 hazard free 

OpenGL exposes hazards 

Enforce full coherence 

Guarantees correctness 

Optimize later 

//State Setup 
glUseProgram( ComputeShader); 
 
SetupTexturesCompute(); 
SetupImagesCompute(); 
SetupUniforms(); 
 
//Ensure reads are coherent 
glMemoryBarrier(GL_ALL_BARRIER_BITS); 
 
glDispatchCompute( X, Y, Z); 
 
//Ensure writes are coherent 
glMemoryBarrier(GL_ALL_BARRIER_BITS); 



Unordered Access Views 

Direct3D 11 world view 

Multiple shader object types 

RWBuffer, RWTexture2D, RWStructuredBuffer, etc 

Unified API for setup 

CSSetUnorderedAccessViews 

OpenGL world view 

GL_image_load_store (Closer to Direct3D 11) 

GL_shader_buffer_storage_object 

Solution 

Use GL_image_load_store as much as possible 

Indirection table for other types 



Tessellation (WIP) 

Both have two shader stages 

Direct3D11: Hull Shader & Domain Shader 

OpenGL: Tessellation Control Shader &Tessellation Evaluation Shader 



Tessellation (WIP) 

Hull Shader 

Tessellator 

Domain Shader 

Vertex Shader 

Geometry Shader 

Tessellation Control Shader 

Tessellator 

Tessellation Evaluation Shader 

Vertex Shader 

Geometry Shader 

Direct3D OpenGL 



Tessellation (WIP) 

Notable divergence: HLSL Hull vs. GLSL Tessellation Control Shader 

HLSL has two Hull Shader functions 

Hull shader (per control point) 

PatchConstantFunction 

GLSL has a single TESSELLATION_CONTROL_SHADER 

Explicitly handle patch constant computations 



Tessellation Solution 

Execute TCS in phases 

First hull shader 

Next patch constants 

 

GLSL provides barrier 

Ensures values are ready 

 

Patch constant function is scalar 

Just execute on one thread 

Possibly vectorize later 

 

layout( vertices = 3) out; 
 
void main() 
{ 
    //Execute Hull shader 
     
    barrier(); 
     
    if (gl_InvocationID == 0) 
    { 
        //Execute Patch constant 
    } 
} 



Optimization 

Feature complete is only half the battle 

No one wants pretty OpenGL 4.3 at half the performance 

Initial test scene < ¼ of Direct3D 

90 FPS versus ~13 FPS (IIRC) 



HLSLCC Optimizatons 

Initially heavily GPU bound 

Internal engine tools were fantastic 

Just needed to implement proper OpenGL query support 

Shadows were the biggest offender 

Filtering massively slower 

Projection somewhat slower 

Filter offsets and projection matrices turned into temp arrays 

GPU compilers couldn’t fold through the temp array 

Needed to aggressively fold / propagate 

Reduced performance deficit to < 2x 



Software Bottlenecks 

Remaining bottlenecks were mostly CPU 

Both application and driver issues 

Driver is very solid, but 

Unreal Engine 4 is a big test 

Heaviest use of new features 

This effort made the driver better 

Applications issues were often unintuitive 

Most problems were synchronizations 

Overall, lots of onion peeling 



Application & Driver Sync s 

Driver likes to perform most of its work on a separate thread 

Often improves software performance by 50% 

Control panel setting to turn it off for testing 

Can be a hindrance with excessive synchronization 

Most optimization effort went into resolving these issues 

General process 

Run code with sampling profiler 

Look at inclusive timing results 

Find large hotspot on function calling into the driver 

Time reflects wait for other thread 



Top Offenders 

glMapBuffer (and similar) 

Needs to resolve and queued glBufferData calls 

Replace with malloc + glBufferSubData 

glGetTexImage 

Used with reallocating mipmap chains 

Replace with glCopyImageSubData 

glGenXXX 

Every time a new object is created 

Replace with a cache of names quaried in a large block 

glGetError 

Just say no, except in debug 



Where are we? 

Infiltrator performance is at parity 

(<5% difference) 

 

Primitive throughput test is faster 

Roughly 1 ms 

 

Rendering test is slower 

Roughly 1.5-2.0 ms 



Where do we go? 

More GPU optimization 

Driver differences 

Loop unrolling improvements 

More software optimizations 

Reduce object references 

Already implemented for UBOs 

Bindless Textures 

More textures & Less overhead 

BufferStorage 

Allows persistent mappings 

Reduces memory copying 



Supporting Android 

Tegra K1 opened an interesting door 

Mobile chip with full OpenGL 4.4 capability 

Common driver code means all the same features 

 

Can we run “full” Unreal Engine 4 content? 

Yes 

Need to make some optimizations / compromises 

No different than a low-end PC 

 

Work done in NVIDIA’s branch 

On-going work with Epic to feedback changes 



What were the challenges? 

High resolution, modest GPU 

Rely on scaling 

Turn some features back (motion blur, bloom, etc) 

Aggressively optimize where feasible 

Do reflections always need to be at full resolution? 

Modest CPU 

Often disable cpu-hungry rendering 

Shadows 

Optimize API at every turn 

Modest Memory 

Remove any duplication 



WE WOULD LIKE YOUR FEEDBACK 

Please take a moment to fill out this 2 minute survey on your own 

device for this talk 

  

 

 

 

 

 

 

 

We appreciate your input 



 


